IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/119463.html
   My bibliography  Save this paper

Portfolio optimization under expected shortfall: contour maps of estimation error

Author

Listed:
  • Caccioli, Fabio
  • Kondor, Imre
  • Papp, Gábor

Abstract

The contour maps of the error of historical resp. parametric estimates for large random portfolios optimized under the risk measure Expected Shortfall (ES) are constructed. Similar maps for the sensitivity of the portfolio weights to small changes in the returns as well as the VaR of the ES-optimized portfolio are also presented, along with results for the distribution of portfolio weights over the random samples and for the out-of-sample and in-the-sample estimates for ES. The contour maps allow one to quantitatively determine the sample size (the length of the time series) required by the optimization for a given number of different assets in the portfolio, at a given confidence level and a given level of relative estimation error. The necessary sample sizes invariably turn out to be unrealistically large for any reasonable choice of the number of assets and the confi dence level. These results are obtained via analytical calculations based on methods borrowed from the statistical physics of random systems, supported by numerical simulations.

Suggested Citation

  • Caccioli, Fabio & Kondor, Imre & Papp, Gábor, 2015. "Portfolio optimization under expected shortfall: contour maps of estimation error," LSE Research Online Documents on Economics 119463, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:119463
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/119463/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Istvan Varga-Haszonits & Imre Kondor, 2008. "The instability of downside risk measures," Papers 0811.0800, arXiv.org, revised Nov 2008.
    3. Fabio Caccioli & Susanne Still & Matteo Marsili & Imre Kondor, 2013. "Optimal liquidation strategies regularize portfolio selection," The European Journal of Finance, Taylor & Francis Journals, vol. 19(6), pages 554-571, July.
    4. Stefano Ciliberti & Imre Kondor & Marc Mezard, 2007. "On the feasibility of portfolio optimization under expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 389-396.
    5. Pafka, Szilárd & Kondor, Imre, 2003. "Noisy covariance matrices and portfolio optimization II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
    6. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    7. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    8. Alexander Kempf & Christoph Memmel, 2006. "Estimating the global Minimum Variance Portfolio," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(4), pages 332-348, October.
    9. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    10. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    11. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    12. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    13. repec:hal:journl:peer-00741629 is not listed on IDEAS
    14. Plerou, V & Gopikrishnan, P & Rosenow, B & Amaral, L.A.N & Stanley, H.E, 2000. "A random matrix theory approach to financial cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 374-382.
    15. S. Ciliberti & M. Mézard, 2007. "Risk minimization through portfolio replication," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 175-180, May.
    16. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    17. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    18. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    19. Vasyl Golosnoy & Yarema Okhrin, 2007. "Multivariate Shrinkage for Optimal Portfolio Weights," The European Journal of Finance, Taylor & Francis Journals, vol. 13(5), pages 441-458.
    20. Imre Kondor & István Varga-Haszonits, 2010. "Instability Of Portfolio Optimization Under Coherent Risk Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 425-437.
    21. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    22. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    23. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    2. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    3. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    4. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    5. G'abor Papp & Fabio Caccioli & Imre Kondor, 2016. "Bias-variance trade-off in portfolio optimization under Expected Shortfall with $\ell_2$ regularization," Papers 1602.08297, arXiv.org, revised Jul 2018.
    6. Imre Kondor, 2014. "Estimation Error of Expected Shortfall," Papers 1402.5534, arXiv.org.
    7. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-28, August.
    8. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2014. "$L_p$ regularized portfolio optimization," Papers 1404.4040, arXiv.org.
    9. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    10. Axel Pruser & Imre Kondor & Andreas Engel, 2021. "Aspects of a phase transition in high-dimensional random geometry," Papers 2105.04395, arXiv.org, revised Jun 2021.
    11. G'abor Papp & Imre Kondor & Fabio Caccioli, 2021. "Optimizing Expected Shortfall under an $\ell_1$ constraint -- an analytic approach," Papers 2103.04375, arXiv.org.
    12. Papp, Gábor & Caccioli, Fabio & Kondor, Imre, 2019. "Bias-variance trade-off in portfolio optimization under expected shortfall with ℓ 2 regularization," LSE Research Online Documents on Economics 100294, London School of Economics and Political Science, LSE Library.
    13. Papp, Gábor & Kondor, Imre & Caccioli, Fabio, 2021. "Optimizing expected shortfall under an ℓ1 constraint—an analytic approach," LSE Research Online Documents on Economics 111051, London School of Economics and Political Science, LSE Library.
    14. Imre Kondor & Fabio Caccioli & G'abor Papp & Matteo Marsili, 2015. "Contour map of estimation error for Expected Shortfall," Papers 1502.06217, arXiv.org.
    15. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    16. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    17. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    18. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    19. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    20. Kazak, Ekaterina & Pohlmeier, Winfried, 2019. "Testing out-of-sample portfolio performance," International Journal of Forecasting, Elsevier, vol. 35(2), pages 540-554.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:119463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.