IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v11y2020i3p38-d413699.html
   My bibliography  Save this article

Estimating Case-Based Learning

Author

Listed:
  • Todd Guilfoos

    (Environmental and Natural Resource Economics, University of Rhode Island, Kingston, RI 02881, USA)

  • Andreas Duus Pape

    (Department of Economics, Binghamton University, Binghamton, NY 13902, USA)

Abstract

We propose a framework in order to econometrically estimate case-based learning and apply it to empirical data from twelve 2 × 2 mixed strategy equilibria experiments. Case-based learning allows agents to explicitly incorporate information available to the experimental subjects in a simple, compact, and arguably natural way. We compare the estimates of case-based learning to other learning models (reinforcement learning and self-tuned experience weighted attraction learning) while using in-sample and out-of-sample measures. We find evidence that case-based learning explains these data better than the other models based on both in-sample and out-of-sample measures. Additionally, the case-based specification estimates how factors determine the salience of past experiences for the agents. We find that, in constant sum games, opposing players’ behavior is more important than recency and, in non-constant sum games, the reverse is true.

Suggested Citation

  • Todd Guilfoos & Andreas Duus Pape, 2020. "Estimating Case-Based Learning," Games, MDPI, vol. 11(3), pages 1-25, September.
  • Handle: RePEc:gam:jgames:v:11:y:2020:i:3:p:38-:d:413699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/11/3/38/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/11/3/38/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Todd Guilfoos & Andreas Pape, 2016. "Predicting human cooperation in the Prisoner’s Dilemma using case-based decision theory," Theory and Decision, Springer, vol. 80(1), pages 1-32, January.
    3. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    4. Wolfgang Ossadnik & Dirk Wilmsmann & Benedikt Niemann, 2013. "Experimental evidence on case-based decision theory," Theory and Decision, Springer, vol. 75(2), pages 211-232, August.
    5. Itzhak Gilboa & David Schmeidler, 1995. "Case-Based Decision Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(3), pages 605-639.
    6. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    7. Matsui, Akihiko, 2000. "Expected utility and case-based reasoning," Mathematical Social Sciences, Elsevier, vol. 39(1), pages 1-12, January.
    8. Pape, Andreas & Kurtz, Kenneth, 2013. "Evaluating Case-based Decision Theory: Predicting Empirical Patterns of Human Classification Learning (Extensions)," MPRA Paper 45206, University Library of Munich, Germany.
    9. Gayer Gabrielle & Gilboa Itzhak & Lieberman Offer, 2007. "Rule-Based and Case-Based Reasoning in Housing Prices," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-37, April.
    10. Kinjo Keita & Sugawara Shinya, 2016. "Predicting Empirical Patterns in Viewing Japanese TV Dramas Using Case-Based Decision Theory," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(2), pages 679-709, June.
    11. Gayer, Gabrielle & Gilboa, Itzhak, 2014. "Analogies and theories: The role of simplicity and the emergence of norms," Games and Economic Behavior, Elsevier, vol. 83(C), pages 267-283.
    12. Francesco Cerigioni, 2016. "Dual decision processes: Retrieving preferences when some choices are intuitive," Economics Working Papers 1550, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    14. Pape, Andreas Duus & Kurtz, Kenneth J., 2013. "Evaluating case-based decision theory: Predicting empirical patterns of human classification learning," Games and Economic Behavior, Elsevier, vol. 82(C), pages 52-65.
    15. Benjamin Radoc & Robert Sugden & Theodore L. Turocy, 2019. "Correlation neglect and case-based decisions," Journal of Risk and Uncertainty, Springer, vol. 59(1), pages 23-49, August.
    16. Brit Grosskopf & Rajiv Sarin & Elizabeth Watson, 2015. "An experiment on case-based decision making," Theory and Decision, Springer, vol. 79(4), pages 639-666, December.
    17. Antoine Billot & Itzhak Gilboa & David Schmeidler, 2012. "Axiomatization of an Exponential Similarity Function," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 10, pages 245-257, World Scientific Publishing Co. Pte. Ltd..
    18. Guerdjikova, Ani, 2008. "Case-based learning with different similarity functions," Games and Economic Behavior, Elsevier, vol. 63(1), pages 107-132, May.
    19. Guilfoos, Todd & Kurtz, Kenneth J., 2017. "Evaluating the role of personality trait information in social dilemmas," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 68(C), pages 119-129.
    20. Francesco Cerigioni, 2021. "Dual Decision Processes: Retrieving Preferences When Some Choices Are Automatic," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1667-1704.
    21. Charness, Gary & Gneezy, Uri, 2008. "What's in a name? Anonymity and social distance in dictator and ultimatum games," Journal of Economic Behavior & Organization, Elsevier, vol. 68(1), pages 29-35, October.
    22. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    23. Andreoni, James A & Miller, John H, 1993. "Rational Cooperation in the Finitely Repeated Prisoner's Dilemma: Experimental Evidence," Economic Journal, Royal Economic Society, vol. 103(418), pages 570-585, May.
    24. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    25. Reinhard Selten & Thorsten Chmura, 2008. "Stationary Concepts for Experimental 2x2-Games," American Economic Review, American Economic Association, vol. 98(3), pages 938-966, June.
    26. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    27. Golosnoy, Vasyl & Okhrin, Yarema, 2008. "General uncertainty in portfolio selection: A case-based decision approach," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 718-734, September.
    28. Han Bleichrodt & Martin Filko & Amit Kothiyal & Peter P. Wakker, 2017. "Making Case-Based Decision Theory Directly Observable," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 123-151, February.
    29. Reinhard Selten, 1998. "Axiomatic Characterization of the Quadratic Scoring Rule," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 43-61, June.
    30. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Russell Golman, 2020. "New Directions in Behavioral Game Theory: Introduction to the Special Issue," Games, MDPI, vol. 11(4), pages 1-3, November.
    2. Gupta, Joyeeta & Bavinck, Maarten & Ros-Tonen, Mirjam & Asubonteng, Kwabena & Bosch, Hilmer & van Ewijk, Edith & Hordijk, Michaela & Van Leynseele, Yves & Lopes Cardozo, Mieke & Miedema, Esther & Pouw, 2021. "COVID-19, poverty and inclusive development," World Development, Elsevier, vol. 145(C).
    3. Günther, Jutta (Ed.) & Wedemeier, Jan (Ed.), 2020. "Struktureller Umbruch durch COVID-19: Implikationen für die Innovationspolitik im Land Bremen," HWWI Policy Papers 128, Hamburg Institute of International Economics (HWWI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd Guilfoos & Andreas Pape, 2016. "Predicting human cooperation in the Prisoner’s Dilemma using case-based decision theory," Theory and Decision, Springer, vol. 80(1), pages 1-32, January.
    2. Han Bleichrodt & Martin Filko & Amit Kothiyal & Peter P. Wakker, 2017. "Making Case-Based Decision Theory Directly Observable," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 123-151, February.
    3. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    4. Marco LiCalzi & Roland Mühlenbernd, 2022. "Feature-weighted categorized play across symmetric games," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 1052-1078, June.
    5. Minjie Huang & Shunan Zhao & Andreas Pape, 2023. "Estimating Case‐based Individual and Social Learning in Corporate Tax Avoidance," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 403-434, April.
    6. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    7. M. Huang & A. D. Pape, 2020. "The Impact of Online Consumer Reviews on Online Sales: The Case-Based Decision Theory Approach," Journal of Consumer Policy, Springer, vol. 43(3), pages 463-490, September.
    8. Benjamin Radoc, 2020. "Bandit with similarity information," Department of Economics, Ateneo de Manila University, Working Paper Series 202002, Department of Economics, Ateneo de Manila University.
    9. Brit Grosskopf & Rajiv Sarin & Elizabeth Watson, 2015. "An experiment on case-based decision making," Theory and Decision, Springer, vol. 79(4), pages 639-666, December.
    10. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    11. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    12. Thorsten Chmura & Werner Güth, 2011. "The Minority of Three-Game: An Experimental and Theoretical Analysis," Games, MDPI, vol. 2(3), pages 1-22, September.
    13. Shachat, Jason & Swarthout, J. Todd, 2012. "Learning about learning in games through experimental control of strategic interdependence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 383-402.
    14. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    15. Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
    16. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    17. Ron Borkovsky & Paul Ellickson & Brett Gordon & Victor Aguirregabiria & Pedro Gardete & Paul Grieco & Todd Gureckis & Teck-Hua Ho & Laurent Mathevet & Andrew Sweeting, 2015. "Multiplicity of equilibria and information structures in empirical games: challenges and prospects," Marketing Letters, Springer, vol. 26(2), pages 115-125, June.
    18. V. P. Crawford, 2014. "Boundedly rational versus optimization-based models of strategic thinking and learning in games," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    19. Davide Marchiori & Sibilla Di Guida & Ido Erev, 2013. "Noisy retrievers and the four-fold reaction to rare events," Working Papers 3, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    20. Chmura, Thorsten & Goerg, Sebastian J. & Selten, Reinhard, 2012. "Learning in experimental 2×2 games," Games and Economic Behavior, Elsevier, vol. 76(1), pages 44-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:11:y:2020:i:3:p:38-:d:413699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.