IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v67y2024ipas1544612324007888.html
   My bibliography  Save this article

Portfolio optimisation using alternative risk measures

Author

Listed:
  • Lorimer, Douglas Austen
  • van Schalkwyk, Cornelis Hendrik
  • Szczygielski, Jan Jakub

Abstract

We use a numerical methods algorithm based on gradient descent to optimise investment portfolios of global indices using raw and forecasted risk measures at differing frequencies. The results permit a comparison of how the characteristics of risk measures other than the variance and standard deviation impact portfolio performance. Asymmetric risk measures result in superior portfolio returns, while risk measures incorporating unsquared deviations outperform those incorporating squared deviations. Risk measures forecasted using the exponentially weighted moving average (EWMA) methodology do not yield significant increases in portfolio returns. Semi-absolute deviation, mean absolute deviation and downside semi-deviation perform favourably in producing higher returns.

Suggested Citation

  • Lorimer, Douglas Austen & van Schalkwyk, Cornelis Hendrik & Szczygielski, Jan Jakub, 2024. "Portfolio optimisation using alternative risk measures," Finance Research Letters, Elsevier, vol. 67(PA).
  • Handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324007888
    DOI: 10.1016/j.frl.2024.105758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324007888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia, 2023. "Do commodity markets catch a cold from stock markets? Modelling uncertainty spillovers using Google search trends and wavelet coherence," International Review of Financial Analysis, Elsevier, vol. 87(C).
    2. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    3. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    4. Peter Byrne & Stephen Lee, 2004. "Different Risk Measures: Different Portfolio Compositions?," Real Estate & Planning Working Papers rep-wp2004-03, Henley Business School, University of Reading.
    5. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    6. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    7. Dr. Brian J. Jacobsen, 2005. "The Use of Downside Risk Measures in Portfolio Construction and Evaluation," Computing in Economics and Finance 2005 5, Society for Computational Economics.
    8. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    9. Hartkopf, Jan Patrick & Reh, Laura, 2023. "Challenging golden standards in EWMA smoothing parameter calibration based on realized covariance measures," Finance Research Letters, Elsevier, vol. 56(C).
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Svetlozar Rachev & Sergio Ortobelli & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2008. "Desirable Properties Of An Ideal Risk Measure In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 19-54.
    12. Houda Hafsa, 2015. "CVaR in Portfolio Optimization: An Essay on the French Market," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 6(2), pages 101-111, April.
    13. Peter Byrne & Stephen Lee, 2004. "Different Risk Measures: Different Portfolio Compositions?," ERES eres2004_516, European Real Estate Society (ERES).
    14. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    15. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
    16. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    17. Ahmed Imran Hunjra & Suha Mahmoud Alawi & Sisira Colombage & Uroosa Sahito & Mahnoor Hanif, 2020. "Portfolio Construction by Using Different Risk Models: A Comparison among Diverse Economic Scenarios," Risks, MDPI, vol. 8(4), pages 1-23, November.
    18. Jordi Andreu & Salvador Torra, 2009. "Optimal market indices using value-at-risk: a first empirical approach for three stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 19(14), pages 1163-1170.
    19. Peter Byrne & Stephen Lee, 2004. "Different risk measures: different portfolio compositions?," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 22(6), pages 501-511, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirza Sikalo & Almira Arnaut-Berilo & Adela Delalic, 2023. "A Combined AHP-PROMETHEE Approach for Portfolio Performance Comparison," IJFS, MDPI, vol. 11(1), pages 1-15, March.
    2. Ahmed Imran Hunjra & Suha Mahmoud Alawi & Sisira Colombage & Uroosa Sahito & Mahnoor Hanif, 2020. "Portfolio Construction by Using Different Risk Models: A Comparison among Diverse Economic Scenarios," Risks, MDPI, vol. 8(4), pages 1-23, November.
    3. Sabastine Mushori & Delson Chikobvu, 2016. "A Stochastic Multi-stage Trading Cost model in optimal portfolio selection," EERI Research Paper Series EERI RP 2016/23, Economics and Econometrics Research Institute (EERI), Brussels.
    4. Kristin Wellner, 2011. "Transforming Markowitz portfolio theory into a practical real estate portfolio allocation process," ERES eres2011_341, European Real Estate Society (ERES).
    5. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    6. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    7. Brett Robinson, 2012. "How many leases are enough to diversify a portfolio of multi-let industrial properties?," ERES eres2012_351, European Real Estate Society (ERES).
    8. Mirza Sikalo & Almira Arnaut-Berilo & Azra Zaimovic, 2022. "Efficient Asset Allocation: Application of Game Theory-Based Model for Superior Performance," IJFS, MDPI, vol. 10(1), pages 1-15, March.
    9. Davide Lauria & W. Brent Lindquist & Stefan Mittnik & Svetlozar T. Rachev, 2022. "ESG-Valued Portfolio Optimization and Dynamic Asset Pricing," Papers 2206.02854, arXiv.org.
    10. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    11. Carsten Lausberg & Felix Brandt, 2024. "Forecasting risk and return of listed real estate: [Die Prognose von Risiko und Rendite von Immobilienaktien:]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 10(1), pages 1-38, December.
    12. Hoe, Lam Weng & Saiful Hafizah, Jaaman & Zaidi, Isa, 2010. "An empirical comparison of different risk measures in portfolio optimization," Business and Economic Horizons (BEH), Prague Development Center (PRADEC), vol. 1(01), pages 1-7, April.
    13. Alessia Naccarato & Andrea Pierini & Giovanna Ferraro, 2021. "Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment," Annals of Operations Research, Springer, vol. 299(1), pages 81-99, April.
    14. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    15. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    16. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    17. Brogan, Anita J. & Stidham Jr., Shaler, 2008. "Non-separation in the mean-lower-partial-moment portfolio optimization problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 701-710, January.
    18. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    19. Huang, Xiaoxia, 2008. "Portfolio selection with a new definition of risk," European Journal of Operational Research, Elsevier, vol. 186(1), pages 351-357, April.
    20. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324007888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.