IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2022i1p140-156.html
   My bibliography  Save this article

Optimal Shrinkage-Based Portfolio Selection in High Dimensions

Author

Listed:
  • Taras Bodnar
  • Yarema Okhrin
  • Nestor Parolya

Abstract

In this article, we estimate the mean-variance portfolio in the high-dimensional case using the recent results from the theory of random matrices. We construct a linear shrinkage estimator which is distribution-free and is optimal in the sense of maximizing with probability 1 the asymptotic out-of-sample expected utility, that is, mean-variance objective function for different values of risk aversion coefficient which in particular leads to the maximization of the out-of-sample expected utility and to the minimization of the out-of-sample variance. One of the main features of our estimator is the inclusion of the estimation risk related to the sample mean vector into the high-dimensional portfolio optimization. The asymptotic properties of the new estimator are investigated when the number of assets p and the sample size n tend simultaneously to infinity such that p/n→c∈(0,+∞). The results are obtained under weak assumptions imposed on the distribution of the asset returns, namely the existence of the 4+ε moments is only required. Thereafter we perform numerical and empirical studies where the small- and large-sample behavior of the derived estimator is investigated. The suggested estimator shows significant improvements over the existent approaches including the nonlinear shrinkage estimator and the three-fund portfolio rule, especially when the portfolio dimension is larger than the sample size. Moreover, it is robust to deviations from normality.

Suggested Citation

  • Taras Bodnar & Yarema Okhrin & Nestor Parolya, 2022. "Optimal Shrinkage-Based Portfolio Selection in High Dimensions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 140-156, December.
  • Handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:140-156
    DOI: 10.1080/07350015.2021.2004897
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.2004897
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.2004897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. repec:hal:journl:peer-00741629 is not listed on IDEAS
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Friesen, Olga & Löwe, Matthias & Stolz, Michael, 2013. "Gaussian fluctuations for sample covariance matrices with dependent data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 270-287.
    5. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    6. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    7. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    8. Taras Bodnar & Wolfgang Schmid, 2009. "Econometrical analysis of the sample efficient frontier," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 317-335.
    9. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    10. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    11. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    12. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    13. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    14. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    15. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    16. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    17. Vasyl Golosnoy & Yarema Okhrin, 2007. "Multivariate Shrinkage for Optimal Portfolio Weights," The European Journal of Finance, Taylor & Francis Journals, vol. 13(5), pages 441-458.
    18. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    19. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    20. Rubio, Francisco & Mestre, Xavier, 2011. "Spectral convergence for a general class of random matrices," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 592-602, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maysam Khodayari Gharanchaei & Reza Babazadeh, 2024. "Crisis Alpha: A High-Performance Trading Algorithm Tested in Market Downturns," Papers 2409.14510, arXiv.org.
    2. Taras Bodnar & Solomiia Dmytriv & Nestor Parolya & Wolfgang Schmid, 2017. "Tests for the weights of the global minimum variance portfolio in a high-dimensional setting," Papers 1710.09587, arXiv.org, revised Jul 2019.
    3. Taras Bodnar & Nestor Parolya & Erik Thors'en, 2022. "Two is better than one: Regularized shrinkage of large minimum variance portfolio," Papers 2202.06666, arXiv.org.
    4. Bodnar, Taras & Mazur, Stepan & Nguyen, Hoang, 2022. "Estimation of optimal portfolio compositions for small sampleand singular covariance matrix," Working Papers 2022:15, Örebro University, School of Business.
    5. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    6. Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019. "Optimal shrinkage estimator for high-dimensional mean vector," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
    7. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    8. Kan, Raymond & Lassance, Nathan & Wang, Xiaolu, 2023. "The distribution of sample mean-variance portfolio weights," LIDAM Discussion Papers LFIN 2023006, Université catholique de Louvain, Louvain Finance (LFIN).
    9. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    10. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    11. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Dutta, Sumanjay & Jain, Shashi, 2024. "Shrinkage and thresholding approaches for expected utility portfolios: An analysis in terms of predictive ability," Finance Research Letters, Elsevier, vol. 64(C).
    13. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    14. Taras Bodnar & Solomiia Dmytriv & Yarema Okhrin & Nestor Parolya & Wolfgang Schmid, 2020. "Statistical inference for the EU portfolio in high dimensions," Papers 2005.04761, arXiv.org.
    15. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    16. Lassance, Nathan, 2021. "Maximizing the Out-of-Sample Sharpe Ratio," LIDAM Discussion Papers LFIN 2021013, Université catholique de Louvain, Louvain Finance (LFIN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    3. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    4. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
    5. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    6. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    7. Taras Bodnar & Nestor Parolya & Erik Thors'en, 2022. "Two is better than one: Regularized shrinkage of large minimum variance portfolio," Papers 2202.06666, arXiv.org.
    8. Taras Bodnar & Solomiia Dmytriv & Nestor Parolya & Wolfgang Schmid, 2017. "Tests for the weights of the global minimum variance portfolio in a high-dimensional setting," Papers 1710.09587, arXiv.org, revised Jul 2019.
    9. Taras Bodnar & Nikolaus Hautsch & Yarema Okhrin & Nestor Parolya, 2024. "Consistent Estimation of the High-Dimensional Efficient Frontier," Papers 2409.15103, arXiv.org.
    10. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    11. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    12. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    13. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    14. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    15. Thomas Holgersson & Peter Karlsson & Andreas Stephan, 2020. "A risk perspective of estimating portfolio weights of the global minimum-variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 59-80, March.
    16. Bodnar, Taras & Mazur, Stepan & Nguyen, Hoang, 2022. "Estimation of optimal portfolio compositions for small sampleand singular covariance matrix," Working Papers 2022:15, Örebro University, School of Business.
    17. Imre Kondor & G'abor Papp & Fabio Caccioli, 2016. "Analytic solution to variance optimization with no short-selling," Papers 1612.07067, arXiv.org, revised Jan 2017.
    18. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    19. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    20. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:140-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.