IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp1035-1042.html
   My bibliography  Save this article

Enhanced process integration of black liquor evaporation, gasification, and combined cycle

Author

Listed:
  • Darmawan, Arif
  • Hardi, Flabianus
  • Yoshikawa, Kunio
  • Aziz, Muhammad
  • Tokimatsu, Koji

Abstract

Energy recovery from black liquor (BL) can be performed through gasification at temperatures above the melting point of inorganic chemicals. Complementarily to BL gasification experimental research, this study is conducted to simulate the thermodynamic modeling of an integrated system for BL evaporation, gasification, and combined cycle for power generation. For BL evaporation, a novel system is proposed based on the concept of exergy recovery to minimize exergy loss, and thus, lower the required energy input for evaporation. From the process design and calculations, higher target solid content leads to lower total required energy for BL evaporation. The lowest required total energy for evaporation can be achieved at a target solid content of 75wt% wb. Furthermore, an integrated power generation system adopting gasification and combined cycle is modeled, and an application of different BL evaporation technologies is also evaluated in terms of net energy efficiency. The integrated system with exergy recovery-based evaporation can achieve a net energy efficiency of 34.5%, which is significantly higher than those of multi-effect evaporators (24.5%) and conventional boiler-based evaporation (14.7%).

Suggested Citation

  • Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1035-1042
    DOI: 10.1016/j.apenergy.2017.05.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aziz, Muhammad & Juangsa, Firman Bagja & Kurniawan, Winarto & Budiman, Bentang Arief, 2016. "Clean Co-production of H2 and power from low rank coal," Energy, Elsevier, vol. 116(P1), pages 489-497.
    2. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    3. Muhammad Aziz & Takuya Oda & Takao Kashiwagi, 2014. "Advanced Energy Harvesting from Macroalgae—Innovative Integration of Drying, Gasification and Combined Cycle," Energies, MDPI, vol. 7(12), pages 1-19, December.
    4. Aziz, Muhammad & Prawisudha, Pandji & Prabowo, Bayu & Budiman, Bentang Arief, 2015. "Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems," Applied Energy, Elsevier, vol. 139(C), pages 188-195.
    5. Zhang, Yuming & Yao, Meiqin & Gao, Shiqiu & Sun, Guogang & Xu, Guangwen, 2015. "Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed," Applied Energy, Elsevier, vol. 160(C), pages 820-828.
    6. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2013. "System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems," Applied Energy, Elsevier, vol. 112(C), pages 1275-1282.
    7. Ji, Xiaoyan & Lundgren, Joakim & Wang, Chuan & Dahl, Jan & Grip, Carl-Erik, 2012. "Simulation and energy optimization of a pulp and paper mill – Evaporation plant and digester," Applied Energy, Elsevier, vol. 97(C), pages 30-37.
    8. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    9. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture," Applied Energy, Elsevier, vol. 97(C), pages 49-55.
    10. Eriksson, H. & Harvey, S., 2004. "Black liquor gasification—consequences for both industry and society," Energy, Elsevier, vol. 29(4), pages 581-612.
    11. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    2. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    3. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    4. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    5. Ma, Xiaotian & Shen, Xiaoxu & Qi, Congcong & Ye, Liping & Yang, Donglu & Hong, Jinglan, 2018. "Energy and carbon coupled water footprint analysis for Kraft wood pulp paper production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 253-261.
    6. Yin, Yongjun & Liu, Jiang & Yang, Jingjing & Wang, Yang & Jia, Yanlong & Song, Xueping & Wu, Min & Man, Yi, 2023. "Energetic-environmental-economic assessment of utilizing weak black liquor to produce syngas for replacing evaporation based on coal water slurry gasification," Energy, Elsevier, vol. 283(C).
    7. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    8. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    2. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    3. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    4. Darmawan, Arif & Budianto, Dwika & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system," Applied Energy, Elsevier, vol. 204(C), pages 1138-1147.
    5. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    6. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    7. Muhammad Aziz & Dwika Budianto & Takuya Oda, 2016. "Computational Fluid Dynamic Analysis of Co-Firing of Palm Kernel Shell and Coal," Energies, MDPI, vol. 9(3), pages 1-15, February.
    8. Andersson, Jim & Lundgren, Joakim, 2014. "Techno-economic analysis of ammonia production via integrated biomass gasification," Applied Energy, Elsevier, vol. 130(C), pages 484-490.
    9. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Khasani, & Prasidha, Willie & Widyatama, Arif & Aziz, Muhammad, 2021. "Energy-saving and environmentally-benign integrated ammonia production system," Energy, Elsevier, vol. 235(C).
    11. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Nong, Guangzai & Huang, Lijie & Mo, Haitao & Wang, Shuangfei, 2013. "Investigate the variability of gas compositions and thermal efficiency of bagasse black liquor gasification," Energy, Elsevier, vol. 49(C), pages 178-181.
    13. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
    14. Imai, Akihisa & Hardi, Flabianus & Lundqvist, Petter & Furusjö, Erik & Kirtania, Kawnish & Karagöz, Selhan & Tekin, Kubilay & Yoshikawa, Kunio, 2018. "Alkali-catalyzed hydrothermal treatment of sawdust for production of a potential feedstock for catalytic gasification," Applied Energy, Elsevier, vol. 231(C), pages 594-599.
    15. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.
    16. Ahlström, Johan M. & Pettersson, Karin & Wetterlund, Elisabeth & Harvey, Simon, 2017. "Value chains for integrated production of liquefied bio-SNG at sawmill sites – Techno-economic and carbon footprint evaluation," Applied Energy, Elsevier, vol. 206(C), pages 1590-1608.
    17. Md. Emdadul Hoque & Fazlur Rashid & Muhammad Aziz, 2021. "Gasification and Power Generation Characteristics of Rice Husk, Sawdust, and Coconut Shell Using a Fixed-Bed Downdraft Gasifier," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    18. Naqvi, M. & Dahlquist, E. & Yan, J. & Naqvi, S.R. & Nizami, A.S. & Salman, C.A. & Danish, M. & Farooq, U. & Rehan, M. & Khan, Z. & Qureshi, A.S., 2018. "Polygeneration system integrated with small non-wood pulp mills for substitute natural gas production," Applied Energy, Elsevier, vol. 224(C), pages 636-646.
    19. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    20. Inmaculada Carrasco & Juan Sebastián Castillo-Valero & Carmen Córcoles & Marcos Carchano, 2021. "Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports," IJERPH, MDPI, vol. 18(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1035-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.