IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i4p581-612.html
   My bibliography  Save this article

Black liquor gasification—consequences for both industry and society

Author

Listed:
  • Eriksson, H.
  • Harvey, S.

Abstract

The pulp and paper industry consumes large quantities of biofuels to satisfy process requirements. Biomass is however a limited resource, to be used as effectively as possible. Modern pulping operations have excess internal fuels compared to the amounts needed to satisfy process steam demands. The excess fuel is often used for cogeneration of electric power. If market biofuel availability at a reasonable price is limited, import/export to/from a mill however changes the amount of such biofuel available for alternative users. This work compares different mill powerhouse technologies and CHP plant configurations (including conventional recovery boiler technology and black liquor gasification technology) with respect to electric power output from a given fuel resource. Different process steam demand levels for different representative mill types are considered. The comparison accounts for decreased/increased electricity production in an alternative energy system when biofuel is imported/exported to/from the mill. The results show that black liquor gasification is in all cases considered an attractive powerhouse recovery cycle technology. For moderate values of the marginal electric power generation efficiency for biofuel exported to the reference alternative energy system, excess mill internal biofuel should be used on mill site for gas turbine based CHP power generation. The remaining excess biofuels in market pulp mills should be exported and used in the reference alternative energy system in this case. For integrated pulp and paper mills, biofuel should be imported, but only for cogeneration usage (i.e. condensing power units should be avoided). If biofuel can be used elsewhere for high efficiency CHP power generation, mill internal biofuel should be used exclusively for process heating, and the remainder should be exported.

Suggested Citation

  • Eriksson, H. & Harvey, S., 2004. "Black liquor gasification—consequences for both industry and society," Energy, Elsevier, vol. 29(4), pages 581-612.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:4:p:581-612
    DOI: 10.1016/j.energy.2003.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203002433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2003.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pettersson, Karin & Harvey, Simon, 2010. "CO2 emission balances for different black liquor gasification biorefinery concepts for production of electricity or second-generation liquid biofuels," Energy, Elsevier, vol. 35(2), pages 1101-1106.
    2. Guangzai Nong & Zongwen Zhou & Shuangfei Wang, 2015. "Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis," Energies, MDPI, vol. 9(1), pages 1-11, December.
    3. Laurijssen, Jobien & Faaij, André & Worrell, Ernst, 2012. "Energy conversion strategies in the European paper industry – A case study in three countries," Applied Energy, Elsevier, vol. 98(C), pages 102-113.
    4. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization," Applied Energy, Elsevier, vol. 90(1), pages 24-31.
    5. Guo, Da-liang & Wu, Shu-bin & Liu, Bei & Yin, Xiu-li & Yang, Qing, 2012. "Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification," Applied Energy, Elsevier, vol. 95(C), pages 22-30.
    6. Nong, Guangzai & Huang, Lijie & Mo, Haitao & Wang, Shuangfei, 2013. "Investigate the variability of gas compositions and thermal efficiency of bagasse black liquor gasification," Energy, Elsevier, vol. 49(C), pages 178-181.
    7. Andersson, E. & Harvey, S., 2007. "Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass," Energy, Elsevier, vol. 32(4), pages 399-405.
    8. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    9. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    10. Joelsson, Jonas M. & Gustavsson, Leif, 2012. "Reductions in greenhouse gas emissions and oil use by DME (di-methyl ether) and FT (Fischer-Tropsch) diesel production in chemical pulp mills," Energy, Elsevier, vol. 39(1), pages 363-374.
    11. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:4:p:581-612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.