IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp31-38.html
   My bibliography  Save this article

Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation

Author

Listed:
  • Juangsa, Firman Bagja
  • Prananto, Lukman Adi
  • Mufrodi, Zahrul
  • Budiman, Arief
  • Oda, Takuya
  • Aziz, Muhammad

Abstract

Hydrogen (H2) has been well studied for its potential use in energy storage, which is particularly related with the intermittent characteristic of renewable energy sources. However, the gas form of H2 at standard pressure and temperature (STP) poses a challenging problem in terms of storage, transportation, and low volumetric energy density. An effective and reversible method for H2 storage is chemically bonded H2 used in the toluene (C7H8)/methylcyclohexane (MCH, C7H14) cycle. This study investigates a power generation system from H2 storage in MCH, involving the dehydrogenation process and the combined cycle as a power generation process. An adequate analysis of the heat circulation was performed through an enhanced process integration (EPI) to ensure the high energy-efficiency of the proposed system. A highly endothermic reaction of dehydrogenation was supplied by utilizing the energy/heat from air-fuel combustion to ensure the effective heat recovery of the system. The proposed system was analyzed through an adjustment of the main operating parameters, namely, the GT inlet pressure, GT inlet temperature, and the condenser pressure, to observe their effects on the efficiency of the system. It was found that these parameters have a significant influence on the system performance and provide the possibility of further improvement. Under optimum conditions, the proposed system can realize a very high system efficiency of 54.6%. Moreover, the proposed system is also compared to a Graz cycle-based system, which has been reported to achieve an excellent power generation cycle from H2. This result implies that the proposed integrated system leads to a significantly higher power-generating efficiency. Numerically, the proposed system demonstrated a system efficiency of 53.7% under similar conditions as the Graz cycle based system, which achieved a system efficiency of 22.7%.

Suggested Citation

  • Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:31-38
    DOI: 10.1016/j.apenergy.2018.05.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    2. Fikrt, André & Brehmer, Richard & Milella, Vito-Oronzo & Müller, Karsten & Bösmann, Andreas & Preuster, Patrick & Alt, Nicolas & Schlücker, Eberhard & Wasserscheid, Peter & Arlt, Wolfgang, 2017. "Dynamic power supply by hydrogen bound to a liquid organic hydrogen carrier," Applied Energy, Elsevier, vol. 194(C), pages 1-8.
    3. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    4. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    5. Chuang, Chia-Chin & Sue, Deng-Chern, 2005. "Performance effects of combined cycle power plant with variable condenser pressure and loading," Energy, Elsevier, vol. 30(10), pages 1793-1801.
    6. Aziz, Muhammad & Juangsa, Firman Bagja & Kurniawan, Winarto & Budiman, Bentang Arief, 2016. "Clean Co-production of H2 and power from low rank coal," Energy, Elsevier, vol. 116(P1), pages 489-497.
    7. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    8. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    9. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    10. Aziz, Muhammad & Oda, Takuya & Kashiwagi, Takao, 2014. "Integration of energy-efficient drying in microalgae utilization based on enhanced process integration," Energy, Elsevier, vol. 70(C), pages 307-316.
    11. Robinius, Martin & Raje, Tanmay & Nykamp, Stefan & Rott, Tobias & Müller, Martin & Grube, Thomas & Katzenbach, Burkhard & Küppers, Stefan & Stolten, Detlef, 2018. "Power-to-Gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator," Applied Energy, Elsevier, vol. 210(C), pages 182-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    2. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. Khasani, & Prasidha, Willie & Widyatama, Arif & Aziz, Muhammad, 2021. "Energy-saving and environmentally-benign integrated ammonia production system," Energy, Elsevier, vol. 235(C).
    4. Muhammad Haris Hamayun & Ibrahim M. Maafa & Murid Hussain & Rabya Aslam, 2020. "Simulation Study to Investigate the Effects of Operational Conditions on Methylcyclohexane Dehydrogenation for Hydrogen Production," Energies, MDPI, vol. 13(1), pages 1-15, January.
    5. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    6. Fukunaga, Akihiko & Kato, Asami & Hara, Yuki & Matsumoto, Takaya, 2023. "Dehydrogenation of methylcyclohexane using solid oxide fuel cell – A smart energy conversion," Applied Energy, Elsevier, vol. 348(C).
    7. Brigljević, Boris & Byun, Manhee & Lim, Hankwon, 2020. "Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems," Applied Energy, Elsevier, vol. 274(C).
    8. Emanuele Sgambitterra & Leonardo Pagnotta, 2024. "Permeability: The Driving Force That Influences the Mechanical Behavior of Polymers Used for Hydrogen Storage and Delivery," Energies, MDPI, vol. 17(9), pages 1-24, May.
    9. Tamura, Masato & Gotou, Takahiro & Ishii, Hiroki & Riechelmann, Dirk, 2020. "Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace," Applied Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    2. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    3. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Darmawan, Arif & Budianto, Dwika & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system," Applied Energy, Elsevier, vol. 204(C), pages 1138-1147.
    5. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    6. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    7. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    8. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    9. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    10. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    11. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    12. Hosein Mohammadi & Sayed Saghaian & Bahareh Zandi Dareh Gharibi, 2023. "Renewable and Non-Renewable Energy Consumption and Its Impact on Economic Growth," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    13. Panagiotis Trivellas & Georgios Malindretos & Panagiotis Reklitis, 2020. "Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    14. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    15. Okumus, Fevzi & Kocak, Emrah, 2023. "Tourism and economic output: Do asymmetries matter?," Annals of Tourism Research, Elsevier, vol. 100(C).
    16. Wei Wang & Kehui Wei & Oleksandr Kubatko & Vladyslav Piven & Yulija Chortok & Oleksandr Derykolenko, 2023. "Economic Growth and Sustainable Transition: Investigating Classical and Novel Factors in Developed Countries," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    17. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    18. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    19. Namahoro, J.P. & Wu, Q. & Su, H., 2023. "Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter?," Energy, Elsevier, vol. 278(PA).
    20. Gerard Bikorimana & Charles Rutikanga & Didier Mwizerwa, 2020. "Linking energy consumption with economic growth: Rwanda as a case study," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 181-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:31-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.