IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp1138-1147.html
   My bibliography  Save this article

Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system

Author

Listed:
  • Darmawan, Arif
  • Budianto, Dwika
  • Aziz, Muhammad
  • Tokimatsu, Koji

Abstract

High-potential biomass residues from the palm oil industry such as palm kernel shells and empty fruit bunch (EFB) must be utilized with the appropriate technology to optimize its economic benefit and minimize the environmental impacts. In this study, the cofiring behavior of hydrothermally treated EFB (HT-EFB) with coal is analyzed in terms of thermal behavior including temperature distribution and the composition of gases produced (CO and CO2) through computational fluid dynamics. Several HT-EFB mass fractions are evaluated, i.e., 0%, 10%, 25%, and 50%. To complement this research, an experimental study is conducted to validate the simulation results. In general, an HT-EFB mass fraction in the range of 10–25% seems to be the most preferable cofiring condition. In addition, an integrated system is also proposed and evaluated including coal drying, HT treatment of EFB, cofiring, and power generation. Very low energy consumption during coal drying and HT treatment of EFB can be achieved. Finally, the net power generation efficiency of the proposed integrated system is approximately 40% including coal drying and HT treatment of EFB processes.

Suggested Citation

  • Darmawan, Arif & Budianto, Dwika & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system," Applied Energy, Elsevier, vol. 204(C), pages 1138-1147.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1138-1147
    DOI: 10.1016/j.apenergy.2017.03.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aziz, Muhammad & Juangsa, Firman Bagja & Kurniawan, Winarto & Budiman, Bentang Arief, 2016. "Clean Co-production of H2 and power from low rank coal," Energy, Elsevier, vol. 116(P1), pages 489-497.
    2. Du, Shan-Wen & Chen, Wei-Hsin & Lucas, John A., 2010. "Pulverized coal burnout in blast furnace simulated by a drop tube furnace," Energy, Elsevier, vol. 35(2), pages 576-581.
    3. Luk, Ho Ting & Lam, Tsz Ying Gene & Oyedun, Adetoyese Olajire & Gebreegziabher, Tesfaldet & Hui, Chi Wai, 2013. "Drying of biomass for power generation: A case study on power generation from empty fruit bunch," Energy, Elsevier, vol. 63(C), pages 205-215.
    4. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    5. Lam, Pak Sui & Lam, Pak Yiu & Sokhansanj, Shahab & Lim, C. Jim & Bi, Xiaotao T. & Stephen, James D. & Pribowo, Amadeus & Mabee, Warren E., 2015. "Steam explosion of oil palm residues for the production of durable pellets," Applied Energy, Elsevier, vol. 141(C), pages 160-166.
    6. Aziz, Muhammad & Prawisudha, Pandji & Prabowo, Bayu & Budiman, Bentang Arief, 2015. "Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems," Applied Energy, Elsevier, vol. 139(C), pages 188-195.
    7. Aziz, Muhammad & Oda, Takuya & Kashiwagi, Takao, 2014. "Integration of energy-efficient drying in microalgae utilization based on enhanced process integration," Energy, Elsevier, vol. 70(C), pages 307-316.
    8. Ninduangdee, Pichet & Kuprianov, Vladimir I., 2016. "A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition," Applied Energy, Elsevier, vol. 176(C), pages 34-48.
    9. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    10. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    2. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    3. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    4. Yu Jiang & Kyeong-Hoon Park & Chung-Hwan Jeon, 2020. "Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation," Energies, MDPI, vol. 13(12), pages 1-27, June.
    5. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    2. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    3. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    4. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    5. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    6. Yu Jiang & Kyeong-Hoon Park & Chung-Hwan Jeon, 2020. "Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal through Boiler Simulation," Energies, MDPI, vol. 13(12), pages 1-27, June.
    7. Muhammad Aziz & Takuya Oda & Takao Kashiwagi, 2014. "Advanced Energy Harvesting from Macroalgae—Innovative Integration of Drying, Gasification and Combined Cycle," Energies, MDPI, vol. 7(12), pages 1-19, December.
    8. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    9. Aziz, Muhammad & Prawisudha, Pandji & Prabowo, Bayu & Budiman, Bentang Arief, 2015. "Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems," Applied Energy, Elsevier, vol. 139(C), pages 188-195.
    10. Montoya, Jorge & Valdés, Carlos & Chaquea, Hernando & Pecha, M. Brennan & Chejne, Farid, 2020. "Surplus electricity production and LCOE estimation in Colombian palm oil mills using empty fresh bunches (EFB) as fuel," Energy, Elsevier, vol. 202(C).
    11. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    12. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    14. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    15. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    16. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    17. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    18. Peyman Alizadeh & Lope G. Tabil & Edmund Mupondwa & Xue Li & Duncan Cree, 2023. "Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust," Energies, MDPI, vol. 16(4), pages 1-18, February.
    19. Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
    20. Fu, Yidan & Cai, Lei & Qi, Chenyu & Zhai, Jiangfeng, 2024. "Thermodynamic and economic analyses of the biomass gasification Allam cycle integrated with compressed carbon energy storage," Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1138-1147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.