IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp820-828.html
   My bibliography  Save this article

Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed

Author

Listed:
  • Zhang, Yuming
  • Yao, Meiqin
  • Gao, Shiqiu
  • Sun, Guogang
  • Xu, Guangwen

Abstract

Steam gasification of petroleum coke catalyzed by black liquor (BL) was conducted in a micro fluidized bed to investigate the reaction characteristics and kinetics, including the effects of temperature, particle size, BL loading amount and oxygen content in steam on product gas composition and reaction rate. The completion time of petroleum coke steam gasification at 900°C decreased from 120min for pure coke to about 40min for the coke blended with 10wt.% BL. The corresponding hydrogen fraction in the produced syngas increased by 9vol.%. The gasification reaction was further enhanced by introducing a small amount of oxygen into the steam. The shrinking core model (SCM) and homogenous model (HM) were used to calculate the kinetics of petroleum coke gasification, finding that SCM enabled the better correlation with experimental data than HM did. Using SCM the activation energy was 77kJ·mol−1 for coke gasification with 10wt.% BL as catalyst, which was much lower than 120kJ·mol−1 for the case without BL blended. The activation energy was further reduced to about 63kJ·mol−1 by adding 5% oxygen into the steam, showing a synergistic effects of BL and O2 on petroleum coke gasification. The study also justified the feasibility of syngas production from petroleum coke via fluidized bed gasification.

Suggested Citation

  • Zhang, Yuming & Yao, Meiqin & Gao, Shiqiu & Sun, Guogang & Xu, Guangwen, 2015. "Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed," Applied Energy, Elsevier, vol. 160(C), pages 820-828.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:820-828
    DOI: 10.1016/j.apenergy.2015.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191500015X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture," Applied Energy, Elsevier, vol. 97(C), pages 49-55.
    2. Gomez, Arturo & Mahinpey, Nader, 2015. "A new model to estimate CO2 coal gasification kinetics based only on parent coal characterization properties," Applied Energy, Elsevier, vol. 137(C), pages 126-133.
    3. Ahmed, I.I. & Gupta, A.K., 2011. "Kinetics of woodchips char gasification with steam and carbon dioxide," Applied Energy, Elsevier, vol. 88(5), pages 1613-1619, May.
    4. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2012. "Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization," Applied Energy, Elsevier, vol. 90(1), pages 24-31.
    5. Guo, Da-liang & Wu, Shu-bin & Liu, Bei & Yin, Xiu-li & Yang, Qing, 2012. "Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification," Applied Energy, Elsevier, vol. 95(C), pages 22-30.
    6. Zhan, Xiuli & Zhou, ZhiJie & Wang, Fuchen, 2010. "Catalytic effect of black liquor on the gasification reactivity of petroleum coke," Applied Energy, Elsevier, vol. 87(5), pages 1710-1715, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guangwei & Zhang, Jianliang & Zhang, Guohua & Ning, Xiaojun & Li, Xinyu & Liu, Zhengjian & Guo, Jian, 2017. "Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends," Energy, Elsevier, vol. 131(C), pages 27-40.
    2. Shahbaz, Muhammad & Yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Pratama, Angga, 2016. "Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash," Applied Energy, Elsevier, vol. 184(C), pages 1306-1315.
    3. Wei, Juntao & Guo, Qinghua & Gong, Yan & Ding, Lu & Yu, Guangsuo, 2020. "Effect of biomass leachates on structure evolution and reactivity characteristic of petroleum coke gasification," Renewable Energy, Elsevier, vol. 155(C), pages 111-120.
    4. Imai, Akihisa & Hardi, Flabianus & Lundqvist, Petter & Furusjö, Erik & Kirtania, Kawnish & Karagöz, Selhan & Tekin, Kubilay & Yoshikawa, Kunio, 2018. "Alkali-catalyzed hydrothermal treatment of sawdust for production of a potential feedstock for catalytic gasification," Applied Energy, Elsevier, vol. 231(C), pages 594-599.
    5. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    6. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Zhu, Yao & Wang, Qinhui & Li, Kaikun & Cen, Jianmeng & Fang, Mengxiang & Ying, Chengdong, 2022. "Study on pressurized isothermal pyrolysis characteristics of low-rank coal in a pressurized micro-fluidized bed reaction analyzer," Energy, Elsevier, vol. 240(C).
    8. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    9. Karczewski, Mateusz & Porada, Stanisław, 2023. "Physically mixed black liquor as a catalytic additive for pressurised steam gasification of different rank bituminous coals," Energy, Elsevier, vol. 263(PB).
    10. Kang, Jun & Zhao, Lihui & Li, Weiwei & Song, Yuncai, 2022. "Artificial neural network model of co-gasification of petroleum coke with coal or biomass in bubbling fluidized bed," Renewable Energy, Elsevier, vol. 194(C), pages 359-365.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    2. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    3. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    4. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    5. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.
    6. Andersson, Jim & Lundgren, Joakim, 2014. "Techno-economic analysis of ammonia production via integrated biomass gasification," Applied Energy, Elsevier, vol. 130(C), pages 484-490.
    7. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Zhang, Yuming & Yu, Deping & Li, Wangliang & Gao, Shiqiu & Xu, Guangwen & Zhou, Huaqun & Chen, Jing, 2013. "Fundamental study of cracking gasification process for comprehensive utilization of vacuum residue," Applied Energy, Elsevier, vol. 112(C), pages 1318-1325.
    9. Ganesan, T. & Elamvazuthi, I. & Ku Shaari, Ku Zilati & Vasant, P., 2013. "Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production," Applied Energy, Elsevier, vol. 103(C), pages 368-374.
    10. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2013. "System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems," Applied Energy, Elsevier, vol. 112(C), pages 1275-1282.
    11. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    12. Xu, Z.R. & Zhu, W. & Li, M. & Zhang, H.W. & Gong, M., 2013. "Quantitative analysis of polycyclic aromatic hydrocarbons in solid residues from supercritical water gasification of wet sewage sludge," Applied Energy, Elsevier, vol. 102(C), pages 476-483.
    13. Naqvi, M. & Dahlquist, E. & Yan, J. & Naqvi, S.R. & Nizami, A.S. & Salman, C.A. & Danish, M. & Farooq, U. & Rehan, M. & Khan, Z. & Qureshi, A.S., 2018. "Polygeneration system integrated with small non-wood pulp mills for substitute natural gas production," Applied Energy, Elsevier, vol. 224(C), pages 636-646.
    14. Nong, Guangzai & Huang, Lijie & Mo, Haitao & Wang, Shuangfei, 2013. "Investigate the variability of gas compositions and thermal efficiency of bagasse black liquor gasification," Energy, Elsevier, vol. 49(C), pages 178-181.
    15. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    16. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    17. Xiaobo Wang & Anqi Liu & Zengli Zhao & Haibin Li, 2020. "Experimental and Model Study on Raw Biomass Gasification Syngas Conditioning in a Molten NaOH-Na 2 CO 3 Mixture," Energies, MDPI, vol. 13(14), pages 1-16, July.
    18. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    19. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    20. Marathe, P.S. & Westerhof, R.J.M. & Kersten, S.R.A., 2019. "Fast pyrolysis of lignins with different molecular weight: Experiments and modelling," Applied Energy, Elsevier, vol. 236(C), pages 1125-1137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:820-828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.