IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp954-971.html
   My bibliography  Save this article

Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains

Author

Listed:
  • Zimmer, Tobias
  • Rudi, Andreas
  • Müller, Ann-Kathrin
  • Fröhling, Magnus
  • Schultmann, Frank

Abstract

Second generation biofuels offer the opportunity to mitigate emissions from the growing transportation sector while respecting the scarcity of arable land in agriculture. Biomass-to-liquid (BtL) concepts based on large-scale gasification are capable of using low-quality residual feedstock, such as wheat straw or forest residues, for the production of transportation fuels. However, large amounts of biomass feedstock are required to achieve the economic capacity of a synthesis plant. Depending on the steepness of the terrain and the role of feedstock owners, biomass potentials can only be utilized to a large extent at increasing costs per ton. Such diseconomies of scale are particularly problematic in the presence of already established value chains consuming the easily accessible and low-cost feedstock. Asa result, second-generation biofuel supply chains face steep supply curves with sharply increasing unit costs. This article investigates the impact of established utilization paths on a large-scale biofuel production value chain. To do so, a mixed-integer linear model is presented which first determines the allocation of biomass resources to CHP plants and domestic consumers. Based on the resulting costs and supply curves, the model then determines the optimum configuration of the synfuel supply chain including locations and capacities of conversion plants, feedstock procurement and transportation. The model is applied to a case study covering six regions in south-central Chile. The total supply chain cost for the production of synthetic gasoline is estimated to amount to 0.8–0.9€ per liter. Feedstock costs of the synfuel supply chain are 20–50% higher in comparison to the price paid by CHP plants and households. The results indicate that both torrefaction and fast pyrolysis can be applied beneficially to utilize remote biomass resources which are less in demand by established consumers.

Suggested Citation

  • Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:954-971
    DOI: 10.1016/j.apenergy.2017.09.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
    2. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    3. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    4. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    5. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    6. Román-Figueroa, Celián & Montenegro, Nicole & Paneque, Manuel, 2017. "Bioenergy potential from crop residue biomass in Araucania Region of Chile," Renewable Energy, Elsevier, vol. 102(PA), pages 170-177.
    7. Mansoornejad, Behrang & Pistikopoulos, Efstratios N. & Stuart, Paul R., 2013. "Scenario-based strategic supply chain design and analysis for the forest biorefinery using an operational supply chain model," International Journal of Production Economics, Elsevier, vol. 144(2), pages 618-634.
    8. Natarajan, Karthikeyan & Leduc, Sylvain & Pelkonen, Paavo & Tomppo, Erkki & Dotzauer, Erik, 2014. "Optimal locations for second generation Fischer Tropsch biodiesel production in Finland," Renewable Energy, Elsevier, vol. 62(C), pages 319-330.
    9. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2013. "A simulation model for the design and analysis of wood pellet supply chains," Applied Energy, Elsevier, vol. 111(C), pages 1239-1249.
    10. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    11. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    12. Li, Qi & Hu, Guiping, 2014. "Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification," Energy, Elsevier, vol. 74(C), pages 576-584.
    13. Schueftan, Alejandra & González, Alejandro D., 2013. "Reduction of firewood consumption by households in south-central Chile associated with energy efficiency programs," Energy Policy, Elsevier, vol. 63(C), pages 823-832.
    14. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    15. Kohl, Thomas & Teles, Moises & Melin, Kristian & Laukkanen, Timo & Järvinen, Mika & Park, Song Won & Guidici, Reinaldo, 2015. "Exergoeconomic assessment of CHP-integrated biomass upgrading," Applied Energy, Elsevier, vol. 156(C), pages 290-305.
    16. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    17. Chew, J.J. & Doshi, V., 2011. "Recent advances in biomass pretreatment – Torrefaction fundamentals and technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4212-4222.
    18. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    19. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    20. Cremonez, Paulo André & Feroldi, Michael & Feiden, Armin & Gustavo Teleken, Joel & José Gris, Diego & Dieter, Jonathan & de Rossi, Eduardo & Antonelli, Jhonatas, 2015. "Current scenario and prospects of use of liquid biofuels in South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 352-362.
    21. Raimundo Soto, 2013. "Rail Transport in Chile," World Scientific Book Chapters, in: Christopher Findlay (ed.), Priorities and Pathways in Services Reform Part II — Political Economy Studies, chapter 6, pages 129-149, World Scientific Publishing Co. Pte. Ltd..
    22. Haro, Pedro & Trippe, Frederik & Stahl, Ralph & Henrich, Edmund, 2013. "Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment," Applied Energy, Elsevier, vol. 108(C), pages 54-65.
    23. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2013. "System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems," Applied Energy, Elsevier, vol. 112(C), pages 1275-1282.
    24. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    25. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    26. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    27. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    28. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    29. Samsatli, Sheila & Samsatli, Nouri J. & Shah, Nilay, 2015. "BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation," Applied Energy, Elsevier, vol. 147(C), pages 131-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almut Güldemund & Vanessa Zeller, 2024. "Reflecting Regional Conditions in Circular Bioeconomy Scenarios: A Multi-Criteria Approach for Matching Technologies and Regions," Sustainability, MDPI, vol. 16(7), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    2. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    4. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    5. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    6. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    7. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    8. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    9. Suckling, Ian D. & de Miguel Mercader, Ferran & Monge, Juan J. & Wakelin, Steve J. & Hall, Peter W. & Bennett, Paul J. & Höck, Barbara & Samsatli, Nouri J. & Samsatli, Sheila & Fahmy, Muthasim, 2022. "Best options for large-scale production of liquid biofuels by value chain modelling: A New Zealand case study," Applied Energy, Elsevier, vol. 323(C).
    10. Mansuy, Nicolas & Thiffault, Evelyne & Lemieux, Sébastien & Manka, Francis & Paré, David & Lebel, Luc, 2015. "Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada," Applied Energy, Elsevier, vol. 154(C), pages 62-73.
    11. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    12. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    13. Harahap, Fumi & Leduc, Sylvain & Mesfun, Sennai & Khatiwada, Dilip & Kraxner, Florian & Silveira, Semida, 2020. "Meeting the bioenergy targets from palm oil based biorefineries: An optimal configuration in Indonesia," Applied Energy, Elsevier, vol. 278(C).
    14. Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
    15. Ng, Rex T.L. & Maravelias, Christos T., 2017. "Economic and energetic analysis of biofuel supply chains," Applied Energy, Elsevier, vol. 205(C), pages 1571-1582.
    16. Mayerle, Sérgio Fernando & Neiva de Figueiredo, João, 2016. "Designing optimal supply chains for anaerobic bio-digestion/energy generation complexes with distributed small farm feedstock sourcing," Renewable Energy, Elsevier, vol. 90(C), pages 46-54.
    17. Leonardo Rivera-Cadavid & Pablo Cesar Manyoma-Velásquez & Diego F. Manotas-Duque, 2019. "Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR)," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    18. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    19. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    20. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:954-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.