IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp97-106.html
   My bibliography  Save this article

CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation

Author

Listed:
  • Prabowo, Bayu
  • Aziz, Muhammad
  • Umeki, Kentaro
  • Susanto, Herri
  • Yan, Mi
  • Yoshikawa, Kunio

Abstract

This study explored the feasibility of biomass CO2 gasification as an effective method for implementing the concept of a carbon-negative power system through bioenergy with carbon capturing and storage. A CO2-recycling biomass gasification system was developed and examined using the thermal equilibrium model. Sensitivity analysis was performed by varying the gasifier temperature from 750 to 950°C, and the turbine inlet temperature (TIT) and turbine exit temperature (TET) of the gas turbine from 1000 to 1200°C and from 900 to 1000°C, respectively. The gasifier efficiency was increased by an increase in the CO2 recycling ratio with the more significant trend shown at the lower gasifier temperature. The turbine efficiency decreased as the CO2 recycling ratio to the gasifier increased over a certain limit, a ratio of 0.55 in most cases. A pressure ratio of 2.3 was optimum in terms of turbine efficiency. Under the examined conditions, the optimum conditions for gaining the highest system efficiency, 39.03%, were a recycling ratio of 0.55 and a TET and TIT of 1000 and 1200°C respectively. The proposed system had 7.57% higher efficiency and exhausted 299.15g CO2/kWh less CO2 emissions than conventional air gasification. Combined with carbon capturing and storage, the system potentially generates carbon-negative power generation with intensity of around 1.55-kgCO2/kgwet-biomass and a maximum efficiency penalty of 6.89%.

Suggested Citation

  • Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:97-106
    DOI: 10.1016/j.apenergy.2015.08.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, I.I. & Gupta, A.K., 2011. "Kinetics of woodchips char gasification with steam and carbon dioxide," Applied Energy, Elsevier, vol. 88(5), pages 1613-1619, May.
    2. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    3. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    4. Prabowo, Bayu & Umeki, Kentaro & Yan, Mi & Nakamura, Masato R. & Castaldi, Marco J. & Yoshikawa, Kunio, 2014. "CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction," Applied Energy, Elsevier, vol. 113(C), pages 670-679.
    5. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    2. Darmawan, Arif & Budianto, Dwika & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system," Applied Energy, Elsevier, vol. 204(C), pages 1138-1147.
    3. Wang, Linwei & Izaharuddin, Ainul N. & Karimi, Nader & Paul, Manosh C., 2021. "A numerical investigation of CO2 gasification of biomass particles- analysis of energy, exergy and entropy generation," Energy, Elsevier, vol. 228(C).
    4. Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
    5. Yao, Xin & Liu, Yang & Yu, Qingbo & Wang, Shuhuan, 2023. "Energy consumption of two-stage system of biomass pyrolysis and bio-oil reforming to recover waste heat from granulated BF slag," Energy, Elsevier, vol. 273(C).
    6. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2017. "A high performance dual electrolyte microfluidic reactor for the utilization of CO2," Applied Energy, Elsevier, vol. 194(C), pages 549-559.
    7. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Md. Emdadul Hoque & Fazlur Rashid & Muhammad Aziz, 2021. "Gasification and Power Generation Characteristics of Rice Husk, Sawdust, and Coconut Shell Using a Fixed-Bed Downdraft Gasifier," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    9. Martínez González, Aldemar & Silva Lora, Electo Eduardo & Escobar Palacio, José Carlos, 2019. "Syngas production from oil sludge gasification and its potential use in power generation systems: An energy and exergy analysis," Energy, Elsevier, vol. 169(C), pages 1175-1190.
    10. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    11. Jeremiáš, M. & Pohořelý, M. & Svoboda, K. & Skoblia, S. & Beňo, Z. & Šyc, M., 2018. "CO2 gasification of biomass: The effect of lime concentration in a fluidised bed," Applied Energy, Elsevier, vol. 217(C), pages 361-368.
    12. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    13. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Zhenbo, 2024. "Microscopic mechanism for CO2-assisted co-gasification of polyethylene and softwood lignin: A reactive force field molecular dynamics study," Energy, Elsevier, vol. 289(C).
    14. Fu, Yidan & Cai, Lei & Qi, Chenyu & Zhai, Jiangfeng, 2024. "Thermodynamic and economic analyses of the biomass gasification Allam cycle integrated with compressed carbon energy storage," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gomez, Arturo & Silbermann, Rico & Mahinpey, Nader, 2014. "A comprehensive experimental procedure for CO2 coal gasification: Is there really a maximum reaction rate?," Applied Energy, Elsevier, vol. 124(C), pages 73-81.
    2. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    3. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    4. Parvez, A.M. & Mujtaba, I.M. & Wu, T., 2016. "Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification," Energy, Elsevier, vol. 94(C), pages 579-588.
    5. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    6. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    7. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Li, Xiumin & Huang, Wei & Abudula, Abuliti, 2014. "Promoting effect of various biomass ashes on the steam gasification of low-rank coal," Applied Energy, Elsevier, vol. 133(C), pages 282-288.
    8. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    9. Prabowo, Bayu & Umeki, Kentaro & Yan, Mi & Nakamura, Masato R. & Castaldi, Marco J. & Yoshikawa, Kunio, 2014. "CO2–steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction," Applied Energy, Elsevier, vol. 113(C), pages 670-679.
    10. Sun, Zhao & Chen, Shiyi & Russell, Christopher K. & Hu, Jun & Rony, Asif H. & Tan, Gang & Chen, Aimin & Duan, Lunbo & Boman, John & Tang, Jinke & Chien, TeYu & Fan, Maohong & Xiang, Wenguo, 2018. "Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms," Applied Energy, Elsevier, vol. 212(C), pages 931-943.
    11. Lopez, Gartzen & Alvarez, Jon & Amutio, Maider & Arregi, Aitor & Bilbao, Javier & Olazar, Martin, 2016. "Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor," Energy, Elsevier, vol. 107(C), pages 493-501.
    12. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    13. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    14. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    15. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    16. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    17. Zhang, Xiaoyu & Zhu, Shujun & Zhu, Jianguo & Liu, Yuhua & Zhang, Jiahang & Hui, Jicheng & Ding, Hongliang & Cao, Xiaoyang & Lyu, Qinggang, 2023. "Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 274(C).
    18. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    19. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    20. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:97-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.