Value chains for integrated production of liquefied bio-SNG at sawmill sites – Techno-economic and carbon footprint evaluation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.09.104
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2016. "Comparison of integration options for gasification-based biofuel production systems – Economic and greenhouse gas emission implications," Energy, Elsevier, vol. 111(C), pages 272-294.
- Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
- Sennai Mesfun & Jan-Olof Anderson & Kentaro Umeki & Andrea Toffolo, 2016. "Integrated SNG Production in a Typical Nordic Sawmill," Energies, MDPI, vol. 9(5), pages 1-19, April.
- Aziz, Muhammad & Prawisudha, Pandji & Prabowo, Bayu & Budiman, Bentang Arief, 2015. "Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems," Applied Energy, Elsevier, vol. 139(C), pages 188-195.
- Gröbl, Thomas & Walter, Heimo & Haider, Markus, 2012. "Biomass steam gasification for production of SNG – Process design and sensitivity analysis," Applied Energy, Elsevier, vol. 97(C), pages 451-461.
- Morandin, Matteo & Toffolo, Andrea & Lazzaretto, Andrea & Maréchal, François & Ensinas, Adriano V. & Nebra, Silvia A., 2011. "Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system," Energy, Elsevier, vol. 36(6), pages 3675-3690.
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
- Alamia, Alberto & Magnusson, Ingemar & Johnsson, Filip & Thunman, Henrik, 2016. "Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union," Applied Energy, Elsevier, vol. 170(C), pages 445-454.
- Calderón, Andrés J. & Agnolucci, Paolo & Papageorgiou, Lazaros G., 2017. "An optimisation framework for the strategic design of synthetic natural gas (BioSNG) supply chains," Applied Energy, Elsevier, vol. 187(C), pages 929-955.
- Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
- Ljungstedt, Hanna & Pettersson, Karin & Harvey, Simon, 2013. "Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites," Energy, Elsevier, vol. 62(C), pages 349-361.
- Anderson, Jan-Olof & Toffolo, Andrea, 2013. "Improving energy efficiency of sawmill industrial sites by integration with pellet and CHP plants," Applied Energy, Elsevier, vol. 111(C), pages 791-800.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nwachukwu, Chinedu M. & Toffolo, Andrea & Wetterlund, Elisabeth, 2020. "Biomass-based gas use in Swedish iron and steel industry – Supply chain and process integration considerations," Renewable Energy, Elsevier, vol. 146(C), pages 2797-2811.
- Nwachukwu, Chinedu Maureen & Olofsson, Elias & Lundmark, Robert & Wetterlund, Elisabeth, 2022. "Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass," Applied Energy, Elsevier, vol. 324(C).
- Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
- Blair, M. Jean & Mabee, Warren E., 2020. "Evaluation of technology, economics and emissions impacts of community-scale bioenergy systems for a forest-based community in Ontario," Renewable Energy, Elsevier, vol. 151(C), pages 715-730.
- Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
- Baharam Roy & Peter Kleine-Möllhoff & Antoine Dalibard, 2022. "Superheated Steam Torrefaction of Biomass Residues with Valorisation of Platform Chemicals Part—2: Economic Assessment and Commercialisation Opportunities," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
- Nwachukwu, Chinedu M. & Toffolo, Andrea & Wetterlund, Elisabeth, 2020. "Biomass-based gas use in Swedish iron and steel industry – Supply chain and process integration considerations," Renewable Energy, Elsevier, vol. 146(C), pages 2797-2811.
- Magdalena Fallde & Johan Torén & Elisabeth Wetterlund, 2017. "Energy System Models as a Means of Visualising Barriers and Drivers of Forest-Based Biofuels: An Interview Study of Developers and Potential Users," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
- Darmawan, Arif & Hardi, Flabianus & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2017. "Enhanced process integration of black liquor evaporation, gasification, and combined cycle," Applied Energy, Elsevier, vol. 204(C), pages 1035-1042.
- Holmgren, Kristina M. & Berntsson, Thore & Lönnqvist, Tomas, 2018. "Profitability and greenhouse gas emissions of gasification-based biofuel production - Analysis of sector specific policy instruments and comparison to conventional biomass conversion technologies," Energy, Elsevier, vol. 165(PA), pages 997-1007.
- Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Li, Sheng & Gao, Lin & Jin, Hongguang, 2017. "Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture," Applied Energy, Elsevier, vol. 194(C), pages 161-171.
- Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
- Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
- Sennai Mesfun & Leonidas Matsakas & Ulrika Rova & Paul Christakopoulos, 2019. "Technoeconomic Assessment of Hybrid Organosolv–Steam Explosion Pretreatment of Woody Biomass," Energies, MDPI, vol. 12(21), pages 1-18, November.
- Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
- Zetterholm, Jonas & Wetterlund, Elisabeth & Pettersson, Karin & Lundgren, Joakim, 2018. "Evaluation of value chain configurations for fast pyrolysis of lignocellulosic biomass - Integration, feedstock, and product choice," Energy, Elsevier, vol. 144(C), pages 564-575.
- Sandberg, Erik & Toffolo, Andrea & Krook-Riekkola, Anna, 2019. "A bottom-up study of biomass and electricity use in a fossil free Swedish industry," Energy, Elsevier, vol. 167(C), pages 1019-1030.
- Jafri, Yawer & Wetterlund, Elisabeth & Anheden, Marie & Kulander, Ida & Håkansson, Åsa & Furusjö, Erik, 2019. "Multi-aspect evaluation of integrated forest-based biofuel production pathways: Part 2. economics, GHG emissions, technology maturity and production potentials," Energy, Elsevier, vol. 172(C), pages 1312-1328.
- Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
- Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
- Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
More about this item
Keywords
Liquefied bio-SNG; Process integration; Sawmill; Gasification; Value chain; System analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:1590-1608. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.