IDEAS home Printed from https://ideas.repec.org/r/wly/iecrev/v53y2012i3p867-886.html
   My bibliography  Save this item

Forecasting Inflation Using Dynamic Model Averaging

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
  2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
  3. Doojav Gan-Ochir & Luvsannyam Davaajargal, 2023. "Forecasting Inflation in Mongolia: A Dynamic Model Averaging Approach," Journal of Time Series Econometrics, De Gruyter, vol. 15(1), pages 27-48, January.
  4. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
  5. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Bond portfolio optimization using dynamic factor models," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 128-158.
  6. Tortorice, Daniel L., 2018. "Equity return predictability, time varying volatility and learning about the permanence of shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 315-343.
  7. Robert A. Hill & Paulo M. M. Rodrigues, 2022. "Forgetting approaches to improve forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1356-1371, November.
  8. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
  9. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
  10. Behnamian, Mehdi & Shojaee, Abdul Nasser & Haji, Gholamali, 2021. "Investigating the Effective Factors in the Growth of Private Sector Investment in Iran," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 7(4), pages 84-57, February.
  11. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
  12. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
  13. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
  14. Florian Huber & Gregor Kastner & Martin Feldkircher, 2019. "Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 621-640, August.
  15. Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
  16. Buncic, Daniel & Piras, Gion Donat, 2016. "Heterogeneous agents, the financial crisis and exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 313-359.
  17. Dong, Xiyong & Yoon, Seong-Min, 2019. "What global economic factors drive emerging Asian stock market returns? Evidence from a dynamic model averaging approach," Economic Modelling, Elsevier, vol. 77(C), pages 204-215.
  18. Jan Prüser, 2019. "Adaptive learning from model space," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(1), pages 29-38, January.
  19. Korobilis, Dimitris, 2013. "Bayesian forecasting with highly correlated predictors," Economics Letters, Elsevier, vol. 118(1), pages 148-150.
  20. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
  21. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
  22. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
  23. Mohsen Khezri & Seyed Ehsan Hosseinidoust & Mohammad Kazem Naziri, 2019. "Investigating the Temporary and Permanent Influential Variables on Iran Inflation Using TVP-DMA Models," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 23(1), pages 209-234, Winter.
  24. Saeed Zaman, 2019. "Cyclical versus Acyclical Inflation: A Deeper Dive," Economic Commentary, Federal Reserve Bank of Cleveland, issue September.
  25. Baxa, Jaromír & Plašil, Miroslav & Vašíček, Bořek, 2015. "Changes in inflation dynamics under inflation targeting? Evidence from Central European countries," Economic Modelling, Elsevier, vol. 44(C), pages 116-130.
  26. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
  27. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
  28. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
  29. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  30. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
  31. Camilla Muglia & Luca Santabarbara & Stefano Grassi, 2019. "Is Bitcoin a Relevant Predictor of Standard & Poor’s 500?," JRFM, MDPI, vol. 12(2), pages 1-10, May.
  32. Paulo M.M. Rodrigues & Rita Fradique Lourenço & Robert Hill, 2020. "House price forecasting and uncertainty: Examining Portugal and Spain," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
  33. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
  34. Konstantin Styrin, 2019. "Forecasting Inflation in Russia Using Dynamic Model Averaging," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 3-18, March.
  35. Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
  36. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2021. "Point and density forecasting of macroeconomic and financial uncertainties of the USA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 700-707, July.
  37. repec:zbw:rwirep:0506 is not listed on IDEAS
  38. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
  39. Konstantin Styrin, 2018. "Forecasting inflation in Russia by Dynamic Model Averaging," Bank of Russia Working Paper Series wps39, Bank of Russia.
  40. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  41. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
  42. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
  43. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
  44. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
  45. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
  46. Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
  47. Montagnoli, Alberto & Mouratidis, Konstantinos & Whyte, Kemar, 2021. "Assessing the cyclical behaviour of bank capital buffers in a finance-augmented macro-economy," Journal of International Money and Finance, Elsevier, vol. 110(C).
  48. Mehmet Balcilar & Rangan Gupta & Clement Kyei & Mark E. Wohar, 2016. "Does Economic Policy Uncertainty Predict Exchange Rate Returns and Volatility? Evidence from a Nonparametric Causality-in-Quantiles Test," Open Economies Review, Springer, vol. 27(2), pages 229-250, April.
  49. Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
  50. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
  51. Koop, Gary & Onorante, Luca, 2011. "Estimating Phillips Curves in Turbulent Times using the ECB’s Survey of Professional Forecasters," SIRE Discussion Papers 2011-19, Scottish Institute for Research in Economics (SIRE).
  52. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
  53. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
  54. Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong & Simo-Kengne, Beatrice D., 2014. "Forecasting China's foreign exchange reserves using dynamic model averaging: The roles of macroeconomic fundamentals, financial stress and economic uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 170-189.
  55. Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou & Rangan Gupta, 2017. "The Informational Content of the Term Spread in Forecasting the US Inflation Rate: A Nonlinear Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 109-121, March.
  56. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
  57. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
  58. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
  59. Knut Are Aastveit & Jamie L. Cross & Herman K. van Dijk, 2023. "Quantifying Time-Varying Forecast Uncertainty and Risk for the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 523-537, April.
  60. Chiu Adrian & Wieladek Tomasz, 2013. "Is the “Great Recession” really so different from the past?," The B.E. Journal of Macroeconomics, De Gruyter, vol. 13(1), pages 1037-1084, October.
  61. repec:edn:sirdps:274 is not listed on IDEAS
  62. Patricia Toledo & Roberto Duncan, 2024. "Forecasting food price inflation during global crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1087-1113, July.
  63. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
  64. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
  65. Tingguo Zheng & Xinyue Fan & Wei Jin & Kuangnan Fang, 2024. "Forecasting CPI with multisource data: The value of media and internet information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 702-753, April.
  66. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
  67. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
  68. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
  69. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
  70. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
  71. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  72. Moretti, Laura & Onorante, Luca & Zakipour-Saber, Shayan, 2019. "Phillips curves in the euro area," Research Technical Papers 8/RT/19, Central Bank of Ireland.
  73. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
  74. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
  75. Onorante, Luca & Raftery, Adrian E., 2016. "Dynamic model averaging in large model spaces using dynamic Occam׳s window," European Economic Review, Elsevier, vol. 81(C), pages 2-14.
  76. Leroi RAPUTSOANE, 2016. "Disaggregated Credit Extension and Financial Distress in South Africa," Journal of Economics Library, KSP Journals, vol. 3(2), pages 226-240, June.
  77. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
  78. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
  79. Piotr Dybka & Bartosz Olesiński & Marek Rozkrut & Andrzej Torój, 2020. "Measuring the uncertainty of shadow economy estimates using Bayesian and frequentist model averaging," KAE Working Papers 2020-046, Warsaw School of Economics, Collegium of Economic Analysis.
  80. Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
  81. Rick Bohte & Luca Rossini, 2019. "Comparing the Forecasting of Cryptocurrencies by Bayesian Time-Varying Volatility Models," JRFM, MDPI, vol. 12(3), pages 1-18, September.
  82. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
  83. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
  84. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
  85. Donghua Wang & Yang Xin & Xiaohui Chang & Xingze Su, 2021. "Realized volatility forecasting and volatility spillovers: Evidence from Chinese non‐ferrous metals futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2713-2731, April.
  86. Barigou, Karim & Goffard, Pierre-Olivier & Loisel, Stéphane & Salhi, Yahia, 2023. "Bayesian model averaging for mortality forecasting using leave-future-out validation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 674-690.
  87. Nonejad, Nima, 2023. "Modeling the out-of-sample predictive relationship between equity premium, returns on the price of crude oil and economic policy uncertainty using multivariate time-varying dimension models," Energy Economics, Elsevier, vol. 126(C).
  88. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
  89. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
  90. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
  91. Pacifico, Antonio, 2020. "Bayesian Fuzzy Clustering with Robust Weighted Distance for Multiple ARIMA and Multivariate Time-Series," MPRA Paper 104379, University Library of Munich, Germany.
  92. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
  93. Miguel Belmonte & Gary Koop, 2014. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 45-69, Emerald Group Publishing Limited.
  94. Piotr Dybka & Bartosz Olesiński & Marek Rozkrut & Andrzej Torój, 2023. "Measuring the model uncertainty of shadow economy estimates," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(4), pages 1069-1106, August.
  95. Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
  96. Riane de Bruyn & Rangan Gupta & Renee van Eyden, 2013. "Forecasting The Rand-Dollar And Rand-Pound Exchange Rates Using Dynamic Model Averaging," Working Papers 201307, University of Pretoria, Department of Economics.
  97. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
  98. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Bank of Russia Working Paper Series wps104, Bank of Russia.
  99. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
  100. Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
  101. Lin, Jianhao & Mei, Ziwei & Chen, Liangyuan & Zhu, Chuanqi, 2023. "Is the People's Bank of China consistent in words and deeds?," China Economic Review, Elsevier, vol. 78(C).
  102. Le Ha Thu & Roberto Leon-Gonzalez, 2021. "Forecasting Macroeconomic Variables in Emerging Economies: An Application to Vietnam," GRIPS Discussion Papers 21-03, National Graduate Institute for Policy Studies.
  103. Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
  104. Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017. "Forecasting With the Standardized Self‐Perturbed Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
  105. Omokolade Akinsomi & Goodness C. Aye & Vassilios Babalos & Fotini Economou & Rangan Gupta, 2016. "Real estate returns predictability revisited: novel evidence from the US REITs market," Empirical Economics, Springer, vol. 51(3), pages 1165-1190, November.
  106. Wang, Yudong & Zhang, Bing & Diao, Xundi & Wu, Chongfeng, 2015. "Commodity price changes and the predictability of economic policy uncertainty," Economics Letters, Elsevier, vol. 127(C), pages 39-42.
  107. Gary Koop & Luca Onorante, 2011. "Estimating Phillips Curves in Turbulent Times using the ECBs Survey of Professional Forecasters," Working Papers 1109, University of Strathclyde Business School, Department of Economics.
  108. Salisu, Afees A. & Tchankam, Jean Paul, 2022. "US Stock return predictability with high dimensional models," Finance Research Letters, Elsevier, vol. 45(C).
  109. Dong, Xiyong & Song, Li & Yoon, Seong-Min, 2021. "How have the dependence structures between stock markets and economic factors changed during the COVID-19 pandemic?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  110. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
  111. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
  112. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
  113. Shuo Cao, 2018. "Learning about Term Structure Predictability under Uncertainty," GRU Working Paper Series GRU_2018_006, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
  114. Naser, Hanan & Alaali, Fatema, 2015. "Can Oil Prices Help Predict US Stock Market Returns: An Evidence Using a DMA Approach," MPRA Paper 65295, University Library of Munich, Germany, revised 25 Jun 2015.
  115. Roberta Capello & Andrea Caragliu, 2021. "Regional growth and disparities in a post‐COVID Europe: A new normality scenario," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 710-727, September.
  116. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
  117. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
  118. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
  119. Hyeyoen Kim & Doojin Ryu, 2013. "Forecasting Exchange Rate from Combination Taylor Rule Fundamental," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S4), pages 81-92, September.
  120. Piotr Dybka, 2020. "One model or many? Exchange rates determinants and their predictive capabilities," KAE Working Papers 2020-053, Warsaw School of Economics, Collegium of Economic Analysis.
  121. Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
  122. Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
  123. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
  124. Bruno P. C. Levy & Hedibert F. Lopes, 2021. "Dynamic Ordering Learning in Multivariate Forecasting," Papers 2101.04164, arXiv.org, revised Nov 2021.
  125. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
  126. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
  127. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
  128. Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
  129. Franz Ruch & Mehmet Balcilar & Rangan Gupta & Mampho P. Modise, 2020. "Forecasting core inflation: the case of South Africa," Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3004-3022, June.
  130. Bobeica, Elena & Hartwig, Benny, 2021. "The COVID-19 shock and challenges for time series models," Working Paper Series 2558, European Central Bank.
  131. Danglun Luo & Qianwei Ying, 2014. "Political Connections and Bank Lines of Credit," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(03), pages 5-21, May.
  132. Dong, Xiyong & Yoon, Seong-Min, 2023. "Effect of weather and environmental attentions on financial system risks: Evidence from Chinese high- and low-carbon assets," Energy Economics, Elsevier, vol. 121(C).
  133. Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
  134. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  135. Dorra Zouari & Achraf Ghorbel & Sonia Ghorbel-Zouari & Younes Boujelbène, 2014. "Volatility spillovers and dynamic correlation between liquidity risk factors in Tunisian banks," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 6(1), pages 1-26.
  136. Gadea-Rivas, María Dolores & Gómez-Loscos, Ana & Leiva-Leon, Danilo, 2019. "Increasing linkages among European regions. The role of sectoral composition," Economic Modelling, Elsevier, vol. 80(C), pages 222-243.
  137. Rangan Gupta & Shawkat Hammoudeh & Beatrice D. Simo-Kengne & Soodabeh Sarafrazi, 2013. "Can the Sharia-Based Islamic Stock Market Returns be Forecasted Using Large Number of Predictors and Models?," Working Papers 201381, University of Pretoria, Department of Economics.
  138. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
  139. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
  140. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
  141. Baxa Jaromír & Plašil Miroslav & Vašíček Bořek, 2017. "Inflation and the steeplechase between economic activity variables: evidence for G7 countries," The B.E. Journal of Macroeconomics, De Gruyter, vol. 17(1), pages 1-42, January.
  142. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
  143. Krzysztof DRACHAL, 2020. "Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 18-34, July.
  144. Yusupova, Alisa & Pavlidis, Nicos G. & Pavlidis, Efthymios G., 2023. "Dynamic linear models with adaptive discounting," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1925-1944.
  145. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
  146. Apergis Nicholas, 2021. "Forecasting US overseas travelling with univariate and multivariate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 963-976, September.
  147. Baur, Dirk G. & Beckmann, Joscha & Czudaj, Robert, 2014. "Gold Price Forecasts in a Dynamic Model Averaging Framework – Have the Determinants Changed Over Time?," Ruhr Economic Papers 506, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  148. Koch, Nicolas & Grosjean, Godefroy & Fuss, Sabine & Edenhofer, Ottmar, 2016. "Politics matters: Regulatory events as catalysts for price formation under cap-and-trade," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 121-139.
  149. Svatopluk Kapounek & Zuzana Kučerová & Evžen Kočenda, 2022. "Selective Attention in Exchange Rate Forecasting," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 210-229, May.
  150. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
  151. Andreas Karatahansopoulos & Georgios Sermpinis & Jason Laws & Christian Dunis, 2014. "Modelling and Trading the Greek Stock Market with Gene Expression and Genetic Programing Algorithms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 596-610, December.
  152. Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
  153. Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
  154. Samuel F. Onipede & Nafiu A. Bashir & Jamaladeen Abubakar, 2023. "Small open economies and external shocks: an application of Bayesian global vector autoregression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1673-1699, April.
  155. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
  156. repec:cmj:journl:y:2013:i:28:rosoiua,rosoiui is not listed on IDEAS
  157. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 29-80.
  158. Xuluo Yin & Jiangang Peng & Tian Tang, 2018. "Improving the Forecasting Accuracy of Crude Oil Prices," Sustainability, MDPI, vol. 10(2), pages 1-9, February.
  159. Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.
  160. Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
  161. Sakar Hasan Hamza & Qingna Li, 2023. "The Dynamics of US Gasoline Demand and Its Prediction: An Extended Dynamic Model Averaging Approach," Energies, MDPI, vol. 16(12), pages 1-13, June.
  162. Nicoletti, Giulio & Passaro, Raffaele, 2012. "Sometimes it helps: the evolving predictive power of spreads on GDP dynamics," Working Paper Series 1447, European Central Bank.
  163. Pfeifer, Lukáš & Hodula, Martin, 2018. "A profit-to-provisioning approach to setting the countercyclical capital buffer: the Czech example," ESRB Working Paper Series 82, European Systemic Risk Board.
  164. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
  165. Panagiotis Delis & Stavros Degiannakis & Konstantinos Giannopoulos, 2023. "What Should be Taken into Consideration when Forecasting Oil Implied Volatility Index?," The Energy Journal, , vol. 44(5), pages 231-250, September.
  166. Tomás Marinozzi, 2023. "Forecasting Inflation in Argentina: A Probabilistic Approach," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(81), pages 81-110, May.
  167. Buncic, Daniel & Stern, Cord, 2019. "Forecast ranked tailored equity portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
  168. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
  169. Grassi, Stefano & Santucci de Magistris, Paolo, 2015. "It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
  170. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
  171. Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
  172. Jiawen Luo & Shengjie Fu & Oguzhan Cepni & Rangan Gupta, 2024. "Climate Risks and Forecastability of US Inflation: Evidence from Dynamic Quantile Model Averaging," Working Papers 202420, University of Pretoria, Department of Economics.
  173. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
  174. George Bagdatoglou & Alexandros Kontonikas & Mark E. Wohar, 2016. "Forecasting Us Inflation Using Dynamic General-To-Specific Model Selection," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 151-167, April.
  175. Mamdouh Abdelmoula M.Abdelsalam & Hany Abdel-Latif, 2020. "An optimal early warning system for currency crises under model uncertainty," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 20(3), pages 99-107.
  176. Cheung, Yin-Wong & Wang, Wenhao, 2022. "Uncovered interest rate parity redux: Non-uniform effects," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 133-151.
  177. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
  178. Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
  179. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
  180. Krzysztof Jajuga & Lucjan T. Orlowski & Karsten Staehr (ed.), 2017. "Contemporary Trends and Challenges in Finance," Springer Proceedings in Business and Economics, Springer, number 978-3-319-54885-2, December.
  181. Zihao Wang & Kun Li & Steve Q. Xia & Hongfu Liu, 2021. "Economic Recession Prediction Using Deep Neural Network," Papers 2107.10980, arXiv.org.
  182. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
  183. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
  184. Martin Hodula & Simona Malovana & Jan Frait, 2019. "Introducing a New Index of Households' Macroeconomic Conditions," Working Papers 2019/10, Czech National Bank.
  185. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
  186. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
  187. Zhongxin Ni & Xing Lu & Wenjun Xue, 2021. "Does the belt and road initiative resolve the steel overcapacity in China? Evidence from a dynamic model averaging approach," Empirical Economics, Springer, vol. 61(1), pages 279-307, July.
  188. Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
  189. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
  190. Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
  191. Oğuzhan Çepni & Rangan Gupta & Mark E. Wohar, 2021. "Variants of consumption‐wealth ratios and predictability of U.S. government bond risk premia," International Review of Finance, International Review of Finance Ltd., vol. 21(2), pages 661-674, June.
  192. Doaa Akl Ahmed & Mamdouh M. Abdelsalam, 2015. "Modelling the Density of Egyptian Quarterly CPI Inflation," Working Papers 936, Economic Research Forum, revised Aug 2015.
  193. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
  194. Byrne, Joseph & Fu, Rong, 2016. "Stock Return Prediction with Fully Flexible Models and Coefficients," MPRA Paper 75366, University Library of Munich, Germany.
  195. María Dolores Gadea-Rivas & Ana Gómez-Loscos & Danilo Leiva-Leon, 2017. "The evolution of regional economic interlinkages in Europe," Working Papers 1705, Banco de España.
  196. Qu, Hui & Li, Guo, 2023. "Multi-perspective investor attention and oil futures volatility forecasting," Energy Economics, Elsevier, vol. 119(C).
  197. Pfeifer, Lukáš & Hodula, Martin, 2021. "A profit-to-provisioning approach to setting the countercyclical capital buffer," Economic Systems, Elsevier, vol. 45(1).
  198. Luca Brugnolini & Giuseppe Ragusa, 2022. "Euro Area Deflationary Pressure Index," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 883-900, October.
  199. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
  200. Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
  201. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
  202. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
  203. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
  204. Hardik A. Marfatia & Christophe André & Rangan Gupta, 2022. "Predicting Housing Market Sentiment: The Role of Financial, Macroeconomic and Real Estate Uncertainties," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 189-209, May.
  205. Thu, Le Ha & Leon-Gonzalez, Roberto, 2021. "Forecasting macroeconomic variables in emerging economies," Journal of Asian Economics, Elsevier, vol. 77(C).
  206. Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
  207. Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie & Wang, Qunwei, 2024. "Forecasting carbon prices under diversified attention: A dynamic model averaging approach with common factors," Energy Economics, Elsevier, vol. 133(C).
  208. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Georgios Sermpinis & Charalampos Stasinakis & Konstantinos Theofilatos & Andreas Karathanasopoul, 2014. "Inflation and Unemployment Forecasting with Genetic Support Vector Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 471-487, September.
  209. Rangan Gupta & Rudi Steinbach, 2010. "Forecasting Key Macroeconomic Variables of the South African Economy: A Small Open Economy New Keynesian DSGE-VAR Model," Working Papers 201019, University of Pretoria, Department of Economics.
  210. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
  211. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
  212. Solikin M. Juhro & Bernard Njindan Iyke, 2019. "Forecasting Indonesian Inflation Within An Inflation-Targeting Framework: Do Large-Scale Models Pay Off?," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(4), pages 423-436, December.
  213. Schlösser, Alexander, 2020. "Forecasting industrial production in Germany: The predictive power of leading indicators," Ruhr Economic Papers 838, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  214. Aijun Yang & Ju Xiang & Lianjie Shu & Hongqiang Yang, 2018. "Sparse Bayesian Variable Selection with Correlation Prior for Forecasting Macroeconomic Variable using Highly Correlated Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 323-338, February.
  215. Baur, Dirk G. & Beckmann, Joscha & Czudaj, Robert, 2016. "A melting pot — Gold price forecasts under model and parameter uncertainty," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 282-291.
  216. Yang Aijun & Xiang Ju & Yang Hongqiang & Lin Jinguan, 2018. "Sparse Bayesian Variable Selection in Probit Model for Forecasting U.S. Recessions Using a Large Set of Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1123-1138, April.
  217. Broadstock, David C. & Cheng, Louis T.W., 2019. "Time-varying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade," Finance Research Letters, Elsevier, vol. 29(C), pages 17-22.
  218. Mamdouh Abdelmoula M. ABDELSALAM, 2017. "Improving Phillips Curve’s Inflation Forecasts under Misspecification," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 54-76, September.
  219. Leopoldo Catania & Stefano Grassi & Francesco Ravazzolo, 2018. "Forecasting Cryptocurrencies Financial Time Series," Working Papers No 5/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  220. Dirk G. Baur & Joscha Beckmann & Robert Czudaj, 2014. "Gold Price Forecasts in a Dynamic Model Averaging Framework – Have the Determinants Changed Over Time?," Ruhr Economic Papers 0506, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  221. Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
  222. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
  223. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
  224. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2020. "Point and Density Forecasting of Macroeconomic and Financial Uncertainties of the United States," Working Papers 202058, University of Pretoria, Department of Economics.
  225. Alain Kabundi & Asithandile Mbelu, 2021. "Estimating a time-varying financial conditions index for South Africa," Empirical Economics, Springer, vol. 60(4), pages 1817-1844, April.
  226. Charemza, Wojciech & Díaz, Carlos & Makarova, Svetlana, 2019. "Quasi ex-ante inflation forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 35(3), pages 994-1007.
  227. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
  228. repec:ipg:wpaper:2014-470 is not listed on IDEAS
  229. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
  230. Ferreira, Diego & Palma, Andreza Aparecida, 2015. "Forecasting Inflation with the Phillips Curve: A Dynamic Model Averaging Approach for Brazil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 69(4), December.
  231. Athambawa Jahfer & Abdul Hameed Mulafara, 2016. "Dividend policy and share price volatility: evidence from Colombo stock market," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 8(2), pages 97-108.
  232. Guangxi Cao, 2012. "Time-Varying Effects of Changes in the Interest Rate and the RMB Exchange Rate on the Stock Market of China: Evidence from the Long-Memory TVP-VAR Model," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(0), pages 230-248, July.
  233. Dmytro Krukovets & Olesia Verchenko, 2019. "Short-Run Forecasting of Core Inflation in Ukraine: a Combined ARMA Approach," Visnyk of the National Bank of Ukraine, National Bank of Ukraine, issue 248, pages 11-20.
  234. Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2020. "A New Index of Housing Sentiment," Management Science, INFORMS, vol. 66(4), pages 1563-1583, April.
  235. Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
  236. Alisa Yusupova & Nicos G. Pavlidis & Efthymios G. Pavlidis, 2019. "Adaptive Dynamic Model Averaging with an Application to House Price Forecasting," Papers 1912.04661, arXiv.org.
  237. Daniele Bianchi & Massimo Guidolin & Manuela Pedio, 2020. "Dissecting Time-Varying Risk Exposures in Cryptocurrency Markets," BAFFI CAREFIN Working Papers 20143, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
  238. Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2024. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian vector autoregressions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2126-2145, September.
  239. Emilian Dobrescu, 2014. "A Hybrid Forecasting Approach," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(35), pages 390-390, February.
  240. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
  241. Bo Zhang, 2019. "Real‐time inflation forecast combination for time‐varying coefficient models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 175-191, April.
  242. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
  243. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2017. "Forecasting the term structure of government bond yields in unstable environments," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 209-225.
  244. Liyuan Cui & Guanhao Feng & Yongmiao Hong, 2024. "Regularized Gmm For Time‐Varying Models With Applications To Asset Pricing," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(2), pages 851-883, May.
  245. Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
  246. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
  247. Simona Malovaná & Martin Hodula & Jan Frait, 2021. "What Does Really Drive Consumer Confidence?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(3), pages 885-913, June.
  248. Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
  249. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.