Quantile regression forecasts of inflation under model uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2016.07.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
- Gerlach, Richard H. & Chen, Cathy W. S. & Chan, Nancy Y. C., 2011.
"Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 481-492.
- Richard H. Gerlach & Cathy W. S. Chen & Nancy Y. C. Chan, 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 481-492, October.
- Chan, Nancy Y. C. & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Bayesian time-varying quantile forecasting for Value-at-Risk in financial markets," Working Papers 9 OMEWP, University of Sydney Business School, Discipline of Business Analytics.
- Geweke, John & Amisano, Gianni, 2010.
"Comparing and evaluating Bayesian predictive distributions of asset returns,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
- Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
- Rahim Alhamzawi & Keming Yu, 2012. "Variable selection in quantile regression via Gibbs sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 799-813, August.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Rossi, Barbara & Sekhposyan, Tatevik, 2014.
"Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
- Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
- Barbara Rossi & Tatevik Sehkposyan, 2013. "Evaluating Predictive Densities of US Output Growth and Inflation in a Large Macroeconomic Data Set," Working Papers 689, Barcelona School of Economics.
- Konstantinos Metaxoglou & Davide Pettenuzzo & Aaron Smith, 2019.
"Option-Implied Equity Premium Predictions via Entropic Tilting,"
Journal of Financial Econometrics, Oxford University Press, vol. 17(4), pages 559-586.
- Davide Pettenuzzo & Konstantinos Metaxoglou & Aaron Smith, 2016. "Option-Implied Equity Premium Predictions via Entropic TiltinG," Working Papers 99, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Konstantinos Metaxoglou & Aaron Smith, 2016. "Option-Implied Equity Premium Predictions via Entropic TiltinG," Working Papers 99R, Brandeis University, Department of Economics and International Business School, revised Aug 2016.
- Jesus regstdpo-Cuaresma & Neil Foster & Robert Stehrer, 2011.
"Determinants of Regional Economic Growth by Quantile,"
Regional Studies, Taylor & Francis Journals, vol. 45(6), pages 809-826.
- Jesús Crespo-Cuaresma & Neil Foster-McGregor & Robert Stehrer, 2009. "The Determinants of Regional Economic Growth by Quantile," wiiw Working Papers 54, The Vienna Institute for International Economic Studies, wiiw.
- Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010.
"Inflation-Gap Persistence in the US,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
- Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2008. "Inflation-Gap Persistence in the U.S," NBER Working Papers 13749, National Bureau of Economic Research, Inc.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Koenker,Roger, 2005.
"Quantile Regression,"
Cambridge Books,
Cambridge University Press, number 9780521845731, September.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, October.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Timothy Cogley & Thomas J. Sargent, 2005.
"Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
- Timothy Cogley & Thomas Sargent, "undated". "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
- Timothy Cogley & Thomas J. Sargent, 2003. "Drifts and volatilities: monetary policies and outcomes in the post WWII U.S," FRB Atlanta Working Paper 2003-25, Federal Reserve Bank of Atlanta.
- Yves S. Schüler, 2014. "Asymmetric Effects of Uncertainty over the Business Cycle: A Quantile Structural Vector Autoregressive Approach," Working Paper Series of the Department of Economics, University of Konstanz 2014-02, Department of Economics, University of Konstanz.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012.
"Constructing Density Forecasts from Quantile Regressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2014.
"Constructing Optimal Density Forecasts From Point Forecast Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
- Luiz Renato Regis de Oliveira Lima & Wagner Piazza Gaglianone, 2012. "Constructing Optimal Density Forecasts from Point Forecast Combinations," Série Textos para Discussão (Working Papers) 5, Programa de Pós-Graduação em Economia - PPGE, Universidade Federal da Paraíba.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
- Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Korobilis, Dimitris, 2015.
"Quantile forecasts of inflation under model uncertainty,"
MPRA Paper
64341, University Library of Munich, Germany.
- Dimitris Korobilis., 2015. "Quantile forecasts of inflation under model uncertainty," Working Papers 2015_09, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," SIRE Discussion Papers 2015-72, Scottish Institute for Research in Economics (SIRE).
- Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017.
"Evaluation of exchange rate point and density forecasts: An application to Brazil,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
- Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2016. "Evaluation of Exchange Rate Point and Density Forecasts: an application to Brazil," Working Papers Series 446, Central Bank of Brazil, Research Department.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive Models and Heavy Tails with an Application to Inflation Forecasting," EMF Research Papers 13, Economic Modelling and Forecasting Group.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Joshua C. C. Chan, 2017.
"The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
- Joshua C.C. Chan, 2015. "The Stochastic Volatility in Mean Model with Time-Varying Parameters: An Application to Inflation Modeling," CAMA Working Papers 2015-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
- Tallman, Ellis W. & Zaman, Saeed, 2020.
"Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
- Ellis W. Tallman & Saeed Zaman, 2018. "Combining Survey Long-Run Forecasts and Nowcasts with BVAR Forecasts Using Relative Entropy," Working Papers (Old Series) 1809, Federal Reserve Bank of Cleveland.
- Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Mandalinci, Zeyyad, 2017.
"Forecasting inflation in emerging markets: An evaluation of alternative models,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
- Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
- Reif Magnus, 2021.
"Macroeconomic uncertainty and forecasting macroeconomic aggregates,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
- Magnus Reif, 2018. "Macroeconomic Uncertainty and Forecasting Macroeconomic Aggregates," ifo Working Paper Series 265, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Benjamin K. Johannsen & Elmar Mertens, 2021.
"A Time‐Series Model of Interest Rates with the Effective Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
- Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
- Benjamin K Johannsen & Elmar Mertens, 2018. "A time series model of interest rates with the effective lower bound," BIS Working Papers 715, Bank for International Settlements.
- Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017.
"Forecasting With the Standardized Self‐Perturbed Kalman Filter,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
More about this item
Keywords
Bayesian model averaging; Quantile regression; Inflation forecasts; Fan charts;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:1:p:11-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.