Does the belt and road initiative resolve the steel overcapacity in China? Evidence from a dynamic model averaging approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-020-01861-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huh, Kwang-Sook, 2011. "Steel consumption and economic growth in Korea: Long-term and short-term evidence," Resources Policy, Elsevier, vol. 36(2), pages 107-113, June.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015.
"Forecasting the price of gold using dynamic model averaging,"
International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
- Goodness C. Aye & Rangan Gupta & Shawkat Hammoudeh & Won Joong Kim, 2014. "Forecasting the Price of Gold Using Dynamic Model Averaging," Working Papers 201415, University of Pretoria, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2011.
"UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?,"
Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
- Koop, Gary & Korobilis, Dimitris, 2009. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2009-40, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," Working Papers 1118, University of Strathclyde Business School, Department of Economics.
- Gary Koop & Dimitris Korompilis, 2009. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," Working Papers 0917, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2011. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2011-39, Scottish Institute for Research in Economics (SIRE).
- Crompton, Paul, 2000. "Future trends in Japanese steel consumption," Resources Policy, Elsevier, vol. 26(2), pages 103-114, June.
- Ghosh, Sajal, 2006. "Steel consumption and economic growth: Evidence from India," Resources Policy, Elsevier, vol. 31(1), pages 7-11, March.
- Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong & Simo-Kengne, Beatrice D., 2014.
"Forecasting China's foreign exchange reserves using dynamic model averaging: The roles of macroeconomic fundamentals, financial stress and economic uncertainty,"
The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 170-189.
- Rangan Gupta & Shawkat Hammoudeh & Won Joong Kim & Beatrice D. Simo-Kengne, 2013. "Forecasting China’s Foreign Exchange Reserves Using Dynamic Model Averaging: The Role of Macroeconomic Fundamentals, Financial Stress and Economic Uncertainty," Working Papers 201338, University of Pretoria, Department of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Crompton, Paul, 2015. "Explaining variation in steel consumption in the OECD," Resources Policy, Elsevier, vol. 45(C), pages 239-246.
- Buncic, Daniel & Moretto, Carlo, 2015.
"Forecasting copper prices with dynamic averaging and selection models,"
The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
- Buncic, Daniel & Moretto, Carlo, 2014. "Forecasting Copper Prices with Dynamic Averaging and Selection Models," Economics Working Paper Series 1430, University of St. Gallen, School of Economics and Political Science.
- Chen, Dongling & Clements, Kenneth W. & Roberts, E. John & Weber, E. Juerg, 1991.
"Forecasting steel demand in China,"
Resources Policy, Elsevier, vol. 17(3), pages 196-210, September.
- D. Chen & K.W. Clements & E.J. Roberts & E.J. Weber, 1990. "Forecasting Steel Demand in China," Economics Discussion / Working Papers 90-24, The University of Western Australia, Department of Economics.
- Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015.
"Forecasting the price of gold,"
Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2014. "Forecasting the Price of Gold," Working Papers 201428, University of Pretoria, Department of Economics.
- Crompton, Paul, 1999. "Forecasting steel consumption in South-East Asia," Resources Policy, Elsevier, vol. 25(2), pages 111-123, June.
- Oka, Tatsushi & Qu, Zhongjun, 2011.
"Estimating structural changes in regression quantiles,"
Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
- Zhongjun Qu & Tatsushi Oka, 2010. "Estimating structural changes in regression quantiles," Boston University - Department of Economics - Working Papers Series WP2010-052, Boston University - Department of Economics.
- Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
- Yin, Xiang & Chen, Wenying, 2013. "Trends and development of steel demand in China: A bottom–up analysis," Resources Policy, Elsevier, vol. 38(4), pages 407-415.
- Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
- Evans, Mark, 2011. "Steel consumption and economic activity in the UK: The integration and cointegration debate," Resources Policy, Elsevier, vol. 36(2), pages 97-106, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sidong Zhao & Yiran Yan & Jing Han, 2021. "Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments," Land, MDPI, vol. 10(8), pages 1-30, July.
- Deng, Zhongqi & Song, Shunfeng & Jiang, Nan & Pang, Ruizhi, 2023. "Sustainable development in China? A nonparametric decomposition of economic growth," China Economic Review, Elsevier, vol. 81(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jan Prüser, 2019. "Adaptive learning from model space," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(1), pages 29-38, January.
- Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Torbat, Sheida & Khashei, Mehdi & Bijari, Mehdi, 2018. "A hybrid probabilistic fuzzy ARIMA model for consumption forecasting in commodity markets," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 22-31.
- Dong, Xiyong & Yoon, Seong-Min, 2019. "What global economic factors drive emerging Asian stock market returns? Evidence from a dynamic model averaging approach," Economic Modelling, Elsevier, vol. 77(C), pages 204-215.
- Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
- Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Dong, Xiyong & Song, Li & Yoon, Seong-Min, 2021. "How have the dependence structures between stock markets and economic factors changed during the COVID-19 pandemic?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
- Behnamian, Mehdi & Shojaee, Abdul Nasser & Haji, Gholamali, 2021. "Investigating the Effective Factors in the Growth of Private Sector Investment in Iran," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 7(4), pages 84-57, February.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Donghua Wang & Yang Xin & Xiaohui Chang & Xingze Su, 2021. "Realized volatility forecasting and volatility spillovers: Evidence from Chinese non‐ferrous metals futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2713-2731, April.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
- Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie & Wang, Qunwei, 2024. "Forecasting carbon prices under diversified attention: A dynamic model averaging approach with common factors," Energy Economics, Elsevier, vol. 133(C).
- Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
- Xuluo Yin & Jiangang Peng & Tian Tang, 2018. "Improving the Forecasting Accuracy of Crude Oil Prices," Sustainability, MDPI, vol. 10(2), pages 1-9, February.
- Cerasa, Andrea & Buscaglia, Daniela, 2019. "A hedonic model of import steel prices: Is the EU market integrated?," Resources Policy, Elsevier, vol. 61(C), pages 241-249.
More about this item
Keywords
The BRI; Steel consumption forecast; Steel overcapacity; Dynamic model averaging; Dynamic model selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:61:y:2021:i:1:d:10.1007_s00181-020-01861-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.