IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201307.html
   My bibliography  Save this paper

Forecasting The Rand-Dollar And Rand-Pound Exchange Rates Using Dynamic Model Averaging

Author

Listed:
  • Riane de Bruyn

    (Department of Economics, University of Pretoria)

  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Renee van Eyden

    (Department of Economics, University of Pretoria)

Abstract

Traditionally, the literature on forecasting exchange rates with many potential predictors have primarily only accounted for parameter uncertainty using Bayesian Model Averaging (BMA). Though BMA-based models of exchange rates tend to outperform the random walk model, we show that when accounting for model uncertainty over and above parameter uncertainty through the use of Dynamic model Averaging (DMA), the gains relative to the random walk model are even bigger. That is, DMA models outperform not only the random walk model, but also the BMA model of exchange rates. We obtain these results based on fifteen potential predictors used to forecast two South African Rand-based exchange rates. In the process, we also unveil variables, which tends to vary over time, that are good predictors of the Rand-Dollar and Rand-Pound exchange rates at different forecasting horizons.

Suggested Citation

  • Riane de Bruyn & Rangan Gupta & Renee van Eyden, 2013. "Forecasting The Rand-Dollar And Rand-Pound Exchange Rates Using Dynamic Model Averaging," Working Papers 201307, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201307
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Martin Feldkircher, 2012. "Forecast Combination and Bayesian Model Averaging: A Prior Sensitivity Analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(4), pages 361-376, July.
    2. L Bonga-Bonga, 2009. "Forward Exchange Rate Puzzle: Joining the Missing Pieces in the Rand-US Dollar Exchange Market," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 33(2), pages 33-48, August.
    3. Simeon Coleman & Juan Carlos Cuestas & Estefanía Mourelle, 2011. "Investigating the oil price-exchange rate nexus: Evidence from Africa," Working Papers 2011015, The University of Sheffield, Department of Economics, revised May 2011.
    4. Samuel Zita & Rangan Gupta, 2008. "Modeling and Forecasting the Metical-Rand Exchange Rate," The IUP Journal of Monetary Economics, IUP Publications, vol. 0(4), pages 63-90, November.
    5. Jacob Gyntelberg & Mico Loretan & Tientip Subhanij & Eric Chan, 2010. "Private information, stock markets, and exchange rates," BIS Papers chapters, in: Bank for International Settlements (ed.), The international financial crisis and policy challenges in Asia and the Pacific, volume 52, pages 186-210, Bank for International Settlements.
    6. Riané de Bruyn & Rangan Gupta & Lardo Stander, 2013. "Testing the Monetary Model for Exchange Rate Determination in South Africa: Evidence from 101 Years of Data," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 7(1), March.
    7. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    8. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    9. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    10. Lumengo Bonga-Bonga, 2008. "Modelling the Rand-Dollar Future Spot Rates: The Kalman Filter Approach," The African Finance Journal, Africagrowth Institute, vol. 10(2), pages 60-75.
    11. Hooper, Peter & Morton, John, 1982. "Fluctuations in the dollar: A model of nominal and real exchange rate determination," Journal of International Money and Finance, Elsevier, vol. 1(1), pages 39-56, January.
    12. Pami Dua & Rajiv Ranjan, 2011. "Modelling and Forecasting the Indian Re/US Dollar Exchange Rate," Working papers 197, Centre for Development Economics, Delhi School of Economics.
    13. Sami Alpanda & Kevin Kotzé & Geoffrey Woglom, 2011. "Forecasting Performance Of An Estimated Dsge Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 79(1), pages 50-67, March.
    14. Adrian W. Throop, 1993. "A generalized uncovered interest parity model of exchange rates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong & Simo-Kengne, Beatrice D., 2014. "Forecasting China's foreign exchange reserves using dynamic model averaging: The roles of macroeconomic fundamentals, financial stress and economic uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 170-189.
    2. Mehmet Balcilar & Rangan Gupta & Charl Jooste, 2014. "Is the Rand Really Decoupled from Economic Fundamentals?," Working Papers 201439, University of Pretoria, Department of Economics.
    3. Goodness C. Aye & Mehmet Balcilar & Adél Bosch & Rangan Gupta & Francois Stofberg, 2013. "The out-of-sample forecasting performance of non-linear models of real exchange rate behaviour: The case of the South African Rand," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 10(1), pages 121-148, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeyoen Kim & Doojin Ryu, 2013. "Forecasting Exchange Rate from Combination Taylor Rule Fundamental," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S4), pages 81-92, September.
    2. Mehmet Balcilar & Rangan Gupta & Clement Kyei & Mark E. Wohar, 2016. "Does Economic Policy Uncertainty Predict Exchange Rate Returns and Volatility? Evidence from a Nonparametric Causality-in-Quantiles Test," Open Economies Review, Springer, vol. 27(2), pages 229-250, April.
    3. Danglun Luo & Qianwei Ying, 2014. "Political Connections and Bank Lines of Credit," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(03), pages 5-21, May.
    4. Goodness C. Aye & Mehmet Balcilar & Adél Bosch & Rangan Gupta & Francois Stofberg, 2013. "The out-of-sample forecasting performance of non-linear models of real exchange rate behaviour: The case of the South African Rand," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 10(1), pages 121-148, April.
    5. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    6. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    7. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    8. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    9. Patrick T. Kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2016. "Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation," Applied Economics, Taylor & Francis Journals, vol. 48(26), pages 2412-2427, June.
    10. Costantini, Mauro & Cuaresma, Jesus Crespo & Hlouskova, Jaroslava, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Economics Series 305, Institute for Advanced Studies.
    11. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    12. Rangan Gupta & Patrick T. kanda & Mampho P. Modise & Alessia Paccagnini, 2013. "DSGE Model-Based Forecasting of Modeled and Non-Modeled Inflation Variables in South Africa," Working Papers 201374, University of Pretoria, Department of Economics.
    13. Rangan Gupta & Patrick T. Kanda & Mampho P. Modise & Alessia Paccagnini, 2015. "DSGE model-based forecasting of modelled and nonmodelled inflation variables in South Africa," Applied Economics, Taylor & Francis Journals, vol. 47(3), pages 207-221, January.
    14. repec:ipg:wpaper:2014-562 is not listed on IDEAS
    15. Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong & Simo-Kengne, Beatrice D., 2014. "Forecasting China's foreign exchange reserves using dynamic model averaging: The roles of macroeconomic fundamentals, financial stress and economic uncertainty," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 170-189.
    16. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    17. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    18. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
    19. Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
    20. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
    21. Aijun Yang & Ju Xiang & Lianjie Shu & Hongqiang Yang, 2018. "Sparse Bayesian Variable Selection with Correlation Prior for Forecasting Macroeconomic Variable using Highly Correlated Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 323-338, February.

    More about this item

    Keywords

    Bayesian; state space models; exchange rates; macroeconomic fundamentals; forecasting;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.