IDEAS home Printed from https://ideas.repec.org/r/rut/rutres/201119.html
   My bibliography  Save this item

Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
  2. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
  3. Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021. "Bagging weak predictors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
  4. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
  5. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
  6. Arabinda Basistha, 2023. "Estimation of short‐run predictive factor for US growth using state employment data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 34-50, January.
  7. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
  8. Olivier Darne & Amelie Charles, 2020. "Nowcasting GDP growth using data reduction methods: Evidence for the French economy," Economics Bulletin, AccessEcon, vol. 40(3), pages 2431-2439.
  9. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
  10. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
  11. R. Lehmann & K. Wohlrabe, 2016. "Looking into the black box of boosting: the case of Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1229-1233, November.
  12. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
  13. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
  14. Yose Rizal Damuri & Prabaning Tyas & Haryo Aswicahyono & Lionel Priyadi & Stella Kusumawardhani & Ega Kurnia Yazid, 2021. "Tracking the Ups and Downs in Indonesia’s Economic Activity During COVID-19 Using Mobility Index: Evidence from Provinces in Java and Bali," Working Papers DP-2021-18, Economic Research Institute for ASEAN and East Asia (ERIA).
  15. Sung Hoon Choi, 2021. "Feasible Weighted Projected Principal Component Analysis for Factor Models with an Application to Bond Risk Premia," Papers 2108.10250, arXiv.org, revised May 2022.
  16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
  17. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024. "Panel data nowcasting: The case of price–earnings ratios," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
  18. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  19. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
  20. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
  21. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
  22. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
  23. Norman R. Swanson, 2016. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 348-353, July.
  24. Amélie Charles & Olivier Darné, 2022. "Backcasting world trade growth using data reduction methods," The World Economy, Wiley Blackwell, vol. 45(10), pages 3169-3191, October.
  25. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
  26. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
  27. Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
  28. Niccolò Comerio & Fausto Pacicco & Massimiliano Serati, 2024. "“Fly down”: the impact of new accounting standards on the airline industry risk assessment," Empirical Economics, Springer, vol. 67(5), pages 2109-2133, November.
  29. Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
  30. Matilainen, M. & Croux, C. & Nordhausen, K. & Oja, H., 2017. "Supervised dimension reduction for multivariate time series," Econometrics and Statistics, Elsevier, vol. 4(C), pages 57-69.
  31. Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022. "The role of investor sentiment in forecasting housing returns in China: A machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
  32. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  33. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
  34. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
  35. Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
  36. Kauppi, Heikki & Virtanen, Timo, 2021. "Boosting nonlinear predictability of macroeconomic time series," International Journal of Forecasting, Elsevier, vol. 37(1), pages 151-170.
  37. Ouysse, Rachida, 2016. "Bayesian model averaging and principal component regression forecasts in a data rich environment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 763-787.
  38. Dalibor Stevanovic & Rachidi Kotchoni & Maxime Leroux, 2017. "Forecasting economic activity in data-rich environment," CIRANO Working Papers 2017s-05, CIRANO.
  39. Ziliang Yu & Jian Yang & Robert I. Webb, 2023. "Price discovery in China's crude oil futures markets: An emerging Asian benchmark?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 297-324, March.
  40. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
  41. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
  42. Shuo-Chieh Huang & Ruey S. Tsay, 2024. "Time Series Forecasting with Many Predictors," Mathematics, MDPI, vol. 12(15), pages 1-20, July.
  43. Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
  44. Heikki Kauppi & Timo Virtanen, 2018. "Boosting Non-linear Predictabilityof Macroeconomic Time Series," Discussion Papers 124, Aboa Centre for Economics.
  45. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, September.
  46. M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
  47. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
  48. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
  49. Marek Chudý & Erhard Reschenhofer, 2019. "Macroeconomic Forecasting with Factor-Augmented Adjusted Band Regression," Econometrics, MDPI, vol. 7(4), pages 1-14, December.
  50. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
  51. repec:hal:journl:hal-04675599 is not listed on IDEAS
  52. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
  53. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
  54. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
  55. Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
  56. Robert Lehmann & Klaus Wohlrabe, 2016. "Boosting und die Prognose der deutschen Industrieproduktion: Was verrät uns der Blick in die Details?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(03), pages 30-33, February.
  57. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
  58. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
  59. Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
  60. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
  61. Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
  62. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
  63. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
  64. Kuruppuarachchi, Duminda & Premachandra, I.M., 2016. "Information spillover dynamics of the energy futures market sector: A novel common factor approach," Energy Economics, Elsevier, vol. 57(C), pages 277-294.
  65. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
  66. Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," Papers 1606.00142, arXiv.org.
  67. Gary Cornwall & Marina Gindelsky, 2024. "Nowcasting Distributional National Accounts for the United States: A Machine Learning Approach," BEA Papers 0130, Bureau of Economic Analysis.
  68. Jack Fosten, 2016. "Forecast evaluation with factor-augmented models," University of East Anglia School of Economics Working Paper Series 2016-05, School of Economics, University of East Anglia, Norwich, UK..
  69. Paolo Andreini & Donato Ceci, 2019. "A Horse Race in High Dimensional Space," CEIS Research Paper 452, Tor Vergata University, CEIS, revised 14 Feb 2019.
  70. Clément Cariou & Amélie Charles & Olivier Darné, 2024. "Are national or regional surveys useful for nowcasting regional jobseekers? The case of the French region of Pays‐de‐la‐Loire," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2341-2357, September.
  71. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
  72. Çepni, Oğuzhan & Guney, I. Ethem & Gupta, Rangan & Wohar, Mark E., 2020. "The role of an aligned investor sentiment index in predicting bond risk premia of the U.S," Journal of Financial Markets, Elsevier, vol. 51(C).
  73. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
  74. Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
  75. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
  76. Periklis Gogas & Theophilos Papadimitriou & Emmanouil Sofianos, 2022. "Forecasting unemployment in the euro area with machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 551-566, April.
  77. Swamy, Vighneswara, 2020. "Macroeconomic transmission of Eurozone shocks to India—A mean-adjusted Bayesian VAR approach," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 126-150.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.