Nowcasting Distributional National Accounts for the United States: A Machine Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Oriol Aspachs & Ruben Durante & Alberto Graziano & Josep Mestres & José Garcia Montalvo & Marta Reynal-Querol, 2020. "Real-Time inequality and the welfare state in motion: Evidence from COVID-19 in Spain," Economics Working Papers 1741, Department of Economics and Business, Universitat Pompeu Fabra.
- Dennis J. Fixle & Marina Gindelsky & Robert Kornfeld, 2021. "The Feasibility of a Quarterly Distribution of Personal Income," BEA Working Papers 0191, Bureau of Economic Analysis.
- Paul Hofmarcher & Jesús Crespo Cuaresma & Bettina Grün & Kurt Hornik, 2015. "Last Night a Shrinkage Saved My Life: Economic Growth, Model Uncertainty and Correlated Regressors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 133-144, March.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Robert J. Kornfeld, 2023. "Improved Measures of Regulated Investment Companies and Real Estate Investment Trusts for the U.S. National Economic Accounts," Survey of Current Business, Bureau of Economic Analysis, May.
- Gerald Auten & David Splinter, 2024. "Income Inequality in the United States: Using Tax Data to Measure Long-Term Trends," Journal of Political Economy, University of Chicago Press, vol. 132(7), pages 2179-2227.
- Jekaterina Navicke & Olga Rastrigina & Holly Sutherland, 2014.
"Nowcasting Indicators of Poverty Risk in the European Union: A Microsimulation Approach,"
Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 119(1), pages 101-119, October.
- Navicke, Jekaterina & Rastrigina, Olga & Sutherland, Holly, 2013. "Nowcasting indicators of poverty risk in the European Union: a microsimulation approach," EUROMOD Working Papers EM11/13, EUROMOD at the Institute for Social and Economic Research.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2024. "Forecasting the UK top 1% income share in a shifting world," Economica, London School of Economics and Political Science, vol. 91(363), pages 1047-1074, July.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Vanda Almeida & Salvador Barrios & Michael Christl & Silvia Poli & Alberto Tumino & Wouter Wielen, 2021.
"The impact of COVID-19 on households´ income in the EU,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(3), pages 413-431, September.
- Vanda Almeida & Salvador Barrios & Michael Christl & Silvia De Poli & Alberto Tumino & Wouter van der Wielen, 2020. "Households' income and the cushioning effect of fiscal policy measures during the Great Lockdown," JRC Working Papers on Taxation & Structural Reforms 2020-06, Joint Research Centre.
- Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004.
"Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach,"
American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
- Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (Bace) Approach," OECD Economics Department Working Papers 266, OECD Publishing.
- Gernot Doppelhofer & Ronald I. Miller & Xavier Sala-i-Martin, 2000. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," NBER Working Papers 7750, National Bureau of Economic Research, Inc.
- Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M. Sologon, 2022. "Estimating the Impact of Covid-19 and Policy Responses on Australian Income Distribution Using Incomplete Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(1), pages 1-31, July.
- Olga Cantó & Francesco Figari & Carlo V. Fiorio & Sarah Kuypers & Sarah Marchal & Marina Romaguera‐de‐la‐Cruz & Iva V. Tasseva & Gerlinde Verbist, 2022.
"Welfare Resilience at the Onset of COVID‐19 Pandemic in a Selection of European Countries: Impact on Public Finance and Household Incomes,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 293-322, June.
- Valentinova Tasseva, Iva & Cantó-Sánchez, Olga & Figari, Francesco & Fiorio, Carlo & Kuypers, Sarah & Marchal, Sarah & Romaguera de la Cruz, Marina & Verbist, Gerlinde, 2021. "Welfare resilience at the onset of the COVID-19 pandemic in a selection of European countries: impact on public finance and household incomes," EUROMOD Working Papers EM4/21, EUROMOD at the Institute for Social and Economic Research.
- Cantó, Olga & Figari, Francesco & Fiorio, Carlo V. & Kuypers, Sarah & Marchal, Sarah & Romaguera-de-la-Cruz, Marina & Tasseva, Iva V. & Verbist, Gerlinde, 2022. "Welfare resilience at the onset of the COVID-19 pandemic in a selection of European countries: impact on public finance and household incomes," LSE Research Online Documents on Economics 111146, London School of Economics and Political Science, LSE Library.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Cathal O'Donoghue & Jason Loughrey, 2014. "Nowcasting in Microsimulation Models: A Methodological Survey," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(4), pages 1-12.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Michael M. Batty & Jesse Bricker & Ella Deeken & Sarah Friedman & Alice Henriques Volz & Eric R. Nielsen & Sarah Reber & Kamila Sommer, 2020. "Updating the Distributional Financial Accounts," FEDS Notes 2020-11-09-2, Board of Governors of the Federal Reserve System (U.S.).
- Timm Bönke & Geraldine Dany-Knedlik & Laura Pagenhardt, 2023. "New DIW Berlin Model Can Nowcast the Current Income Distribution; Inequality Likely to Slightly Increase in 2023," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 13(43/44), pages 283-289.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Oriol Aspachs & Ruben Durante & Alberto Graziano & Josep Mestres & José Garcia Montalvo & Marta Reynal-Querol, 2020. "Real-time inequality and the welfare state in motion: Evidence from COVID-19 in Spain," Economics Working Papers 1734, Department of Economics and Business, Universitat Pompeu Fabra.
- Fernandez, Roque B, 1981.
"A Methodological Note on the Estimation of Time Series,"
The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
- Tom Doan, "undated". "CHOWLIN: RATS procedure to distribute a series to a higher frequency using related series," Statistical Software Components RTS00036, Boston College Department of Economics.
- Tom Doan, "undated". "DISAGGREGATE: RATS procedure to implement general disaggregation (interpolation/distribution) procedure," Statistical Software Components RTS00050, Boston College Department of Economics.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022.
"The role of investor sentiment in forecasting housing returns in China: A machine learning approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2020. "The Role of Investor Sentiment in Forecasting Housing Returns in China: A Machine Learning Approach," Working Papers 202055, University of Pretoria, Department of Economics.
- Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
- O'Donoghue, Cathal & Sologon, Denisa Maria, 2023. "The Transformation of Public Policy Analysis in Times of Crisis – A Microsimulation-Nowcasting Method Using Big Data," IZA Discussion Papers 15937, Institute of Labor Economics (IZA).
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2015.
"Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper series 05_14, Rimini Centre for Economic Analysis.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
- Christophe Piette, 2016. "Predicting Belgium’s GDP using targeted bridge models," Working Paper Research 290, National Bank of Belgium.
- Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
- Denisa M. Sologon & Cathal O’Donoghue & Iryna Kyzyma & Jinjing Li & Jules Linden & Raymond Wagener, 2022.
"The COVID-19 resilience of a continental welfare regime - nowcasting the distributional impact of the crisis,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 777-809, December.
- Denisa Sologon & Cathal O’Donoghue & Iryna Kyzyma & Jinjing Li & Jules Linden & Raymond Wagener, 2020. "The COVID-19 Resilience of a Continental Welfare Regime - Nowcasting the Distributional Impact of the Crisis," LISER Working Paper Series 2020-14, Luxembourg Institute of Socio-Economic Research (LISER).
- Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
- Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
- Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
- Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
More about this item
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
- E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-10-07 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bea:papers:0130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Batch (email available below). General contact details of provider: https://edirc.repec.org/data/beagvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.