An assessment of the marginal predictive content of economic uncertainty indexes and business conditions predictors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2023.11.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Susanto Basu & Brent Bundick, 2017.
"Uncertainty Shocks in a Model of Effective Demand,"
Econometrica, Econometric Society, vol. 85, pages 937-958, May.
- Susanto Basu & Brent Bundick, 2011. "Uncertainty Shocks in a Model of Effective Demand," Boston College Working Papers in Economics 774, Boston College Department of Economics, revised 01 Nov 2015.
- Susanto Basu & Brent Bundick, 2012. "Uncertainty shocks in a model of effective demand," Working Papers 12-15, Federal Reserve Bank of Boston.
- Susanto Basu & Brent Bundick, 2012. "Uncertainty Shocks in a Model of Effective Demand," NBER Working Papers 18420, National Bureau of Economic Research, Inc.
- Susanto Basu & Brent Bundick, 2014. "Uncertainty shocks in a model of effective demand," Research Working Paper RWP 14-15, Federal Reserve Bank of Kansas City.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta†Eksten & Stephen J. Terry, 2018.
"Really Uncertain Business Cycles,"
Econometrica, Econometric Society, vol. 86(3), pages 1031-1065, May.
- Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta-Eksten & Stephen J. Terry, 2012. "Really Uncertain Business Cycles," NBER Working Papers 18245, National Bureau of Economic Research, Inc.
- Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta-Eksten & Stephen Terry, 2013. "Really Uncertain Business Cycles," CEP Discussion Papers dp1195, Centre for Economic Performance, LSE.
- Bloom, Nicholas & Floetotto, Max & Jaimovich, Nir & Saporta-Eksten, Itay & Terry, Stephen, 2013. "Really uncertain business cycles," LSE Research Online Documents on Economics 51526, London School of Economics and Political Science, LSE Library.
- Nicholas Bloom & Max Floetotto & Nir Jaimovich & Itay Saporta-Eksten & Stephen J. Terry, 2014. "Really Uncertain Business Cycles," Working Papers 14-18, Center for Economic Studies, U.S. Census Bureau.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Soojin Jo & Rodrigo Sekkel, 2019.
"Macroeconomic Uncertainty Through the Lens of Professional Forecasters,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 436-446, July.
- Soojin Jo & Rodrigo Sekkel, 2016. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Staff Working Papers 16-5, Bank of Canada.
- Soojin Jo & Rodrigo Sekkel, 2017. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Working Papers 1702, Federal Reserve Bank of Dallas.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Maria Elena Bontempi & Michele Frigeri & Roberto Golinelli & Matteo Squadrani, 2021. "EURQ: A New Web Search‐based Uncertainty Index," Economica, London School of Economics and Political Science, vol. 88(352), pages 969-1015, October.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
- Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016.
"Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
- Marcellino, Massimiliano & Venditti, Fabrizio & Porqueddu, Mario, 2013. "Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility," CEPR Discussion Papers 9334, C.E.P.R. Discussion Papers.
- Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2013. "Short-term GDP forecasting with a mixed frequency dynamic factor model with stochastic volatility," Temi di discussione (Economic working papers) 896, Bank of Italy, Economic Research and International Relations Area.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018.
"Measuring Uncertainty and Its Impact on the Economy,"
The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2016. "Measuring Uncertainty and Its Impact on the Economy," Working Papers (Old Series) 1622, Federal Reserve Bank of Cleveland.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Measuring Uncertainty and Its Impact on the Economy," BAFFI CAREFIN Working Papers 1639, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
- Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009.
"Real-Time Measurement of Business Conditions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
- Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-Time Measurement of Business Conditions," NBER Working Papers 14349, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Sydney C. Ludvigson & Serena Ng, 2009.
"Macro Factors in Bond Risk Premia,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
- Sydeny C. Ludvigson & Serena Ng, 2005. "Macro Factors in Bond Risk Premia," NBER Working Papers 11703, National Bureau of Economic Research, Inc.
- Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2015.
"What does financial volatility tell us about macroeconomic fluctuations?,"
Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 340-360.
- Chauvet, Marcelle & Senyuz, Zeynep & Yoldas, Emre, 2010. "What does financial volatility tell us about macroeconomic fluctuations?," MPRA Paper 34104, University Library of Munich, Germany, revised Jun 2011.
- Marcelle Chauvet & Zeynep Senyuz & Emre Yoldas, 2013. "What does financial volatility tell us about macroeconomic fluctuations?," Finance and Economics Discussion Series 2013-61, Board of Governors of the Federal Reserve System (U.S.).
- Marcelle Chauvet & Zeynep Senyuz & Emre Yoldas, 2012. "What does financial volatility tell us about macroeconomic fluctuations?," Finance and Economics Discussion Series 2012-09, Board of Governors of the Federal Reserve System (U.S.).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015.
"Measuring Uncertainty,"
American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
- Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2013. "Measuring Uncertainty," NBER Working Papers 19456, National Bureau of Economic Research, Inc.
- Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
- Jae Sim & Egon Zakrajsek & Simon Gilchrist, 2010.
"Uncertainty, Financial Frictions, and Investment Dynamics,"
2010 Meeting Papers
1285, Society for Economic Dynamics.
- Simon Gilchrist & Jae W. Sim & Egon Zakrajšek, 2014. "Uncertainty, Financial Frictions, and Investment Dynamics," NBER Working Papers 20038, National Bureau of Economic Research, Inc.
- Simon Gilchrist & Jae W. Sim & Egon Zakrajšek, 2014. "Uncertainty, Financial Frictions, and Investment Dynamics," Finance and Economics Discussion Series 2014-69, Board of Governors of the Federal Reserve System (U.S.).
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
- Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Christian Schumacher, 2007.
"Forecasting German GDP using alternative factor models based on large datasets,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
- Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank.
- James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
- Nicholas Bloom, 2009.
"The Impact of Uncertainty Shocks,"
Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
- Nicholas Bloom, 2007. "The Impact of Uncertainty Shocks," NBER Working Papers 13385, National Bureau of Economic Research, Inc.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
- Rossi, Barbara & Sekhposyan, Tatevik, 2011.
"Understanding models' forecasting performance,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
- Barbara Rossi & Tatevik Sekhposyan, 2010. "Understanding Models' Forecasting Performance," Working Papers 10-56, Duke University, Department of Economics.
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
- Corradi, Valentina & Swanson, Norman R., 2006.
"Predictive Density Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284,
Elsevier.
- Valentina Corradi & Norman Swanson, 2004. "Predictive Density Evaluation," Departmental Working Papers 200419, Rutgers University, Department of Economics.
- Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.
- Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2008.
"A Monthly Indicator of the Euro Area GDP,"
Economics Working Papers
ECO2008/32, European University Institute.
- Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
- Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
- Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, March.
- Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019.
"Predictive regressions under asymmetric loss: Factor augmentation and model selection,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
- Demetrescu, Matei & Hacioglu Hoke, Sinem, 2018. "Predictive regressions under asymmetric loss: factor augmentation and model selection," Bank of England working papers 723, Bank of England.
- Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018.
"Dynamic factor model with infinite‐dimensional factor space: Forecasting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," Center for Economic Research (RECent) 120, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2016. "Dynamic Factor Model with Infinite Dimensional Factor Space: Forecasting," Working Papers ECARES ECARES 2016-16, ULB -- Universite Libre de Bruxelles.
- Forni, Mario & Giovannelli, Alessandro & Lippi, Marco & Soccorsi, Stefano, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," CEPR Discussion Papers 11161, C.E.P.R. Discussion Papers.
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Martin Iseringhausen & Konstantinos Theodoridis, 2025. "A survey-based measure of asymmetric macroeconomic risk in the euro area," Working Papers 68, European Stability Mechanism, revised 11 Feb 2025.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Serena Ng & Jonathan H. Wright, 2013.
"Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
- Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," NBER Working Papers 19469, National Bureau of Economic Research, Inc.
More about this item
Keywords
Latent factor; Latent business conditions predictors; Macroeconomic uncertainty indexes; Principal components analysis; Least absolute shrinkage operator; High-dimensional data; Big data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1391-1409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.