IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/67608.html
   My bibliography  Save this paper

Looking into the Black Box of Boosting: The Case of Germany

Author

Listed:
  • Lehmann, Robert
  • Wohlrabe, Klaus

Abstract

This paper looks into the 'fine print' of boosting for economic forecasting. By using German industrial production for the period from 1996 to 2014 and a data set consisting of 175 monthly indicators, we evaluate which indicators get selected by the boosting algorithm over time and four different forecasting horizons. It turns out that a number of hard indicators like turnovers, as well as a small number of survey results, get selected frequently by the algorithm and are therefore important to forecasting the performance of the German economy. However, there are indicators such as money supply that never get chosen by the boosting approach at all.

Suggested Citation

  • Lehmann, Robert & Wohlrabe, Klaus, 2015. "Looking into the Black Box of Boosting: The Case of Germany," MPRA Paper 67608, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:67608
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/67608/1/MPRA_paper_67608.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/67628/1/MPRA_paper_67608.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
    2. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    3. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2015. "Forecasting gold-price fluctuations: a real-time boosting approach," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 46-50, January.
    4. Buchen, Teresa & Wohlrabe, Klaus, 2011. "Forecasting with many predictors: Is boosting a viable alternative?," Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
    5. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    6. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
    3. Guilherme Lindenmeyer & Pedro Pablo Skorin & Hudson da Silva Torrent, 2021. "Using boosting for forecasting electric energy consumption during a recession: a case study for the Brazilian State Rio Grande do Sul," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 111-128, August.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    6. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    7. Robert Lehmann & Klaus Wohlrabe, 2016. "Boosting und die Prognose der deutschen Industrieproduktion: Was verrät uns der Blick in die Details?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(03), pages 30-33, February.
    8. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    9. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    10. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
    11. Claveria, Oscar & Monte, Enric & Torra, Salvador, 2020. "Economic forecasting with evolved confidence indicators," Economic Modelling, Elsevier, vol. 93(C), pages 576-585.
    12. Guilherme Schultz Lindenmeyer & Hudson Silva Torrent, 2024. "Boosting and Predictability of Macroeconomic Variables: Evidence from Brazil," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 377-409, July.
    13. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    14. Pinkwart, Nicolas, 2018. "Short-term forecasting economic activity in Germany: A supply and demand side system of bridge equations," Discussion Papers 36/2018, Deutsche Bundesbank.
    15. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    16. Matthias Huber & Simone Schüller & Marc Stöckli & Klaus Wohlrabe, 2018. "Maschinelles Lernen in der ökonomischen Forschung," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(07), pages 50-53, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    2. Robert Lehmann & Klaus Wohlrabe, 2017. "Boosting and regional economic forecasting: the case of Germany," Letters in Spatial and Resource Sciences, Springer, vol. 10(2), pages 161-175, July.
    3. Robert Lehmann & Klaus Wohlrabe, 2016. "Boosting und die Prognose der deutschen Industrieproduktion: Was verrät uns der Blick in die Details?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(03), pages 30-33, February.
    4. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    5. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
    6. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2016. "A boosting approach to forecasting gold and silver returns: economic and statistical forecast evaluation," Applied Economics Letters, Taylor & Francis Journals, vol. 23(5), pages 347-352, March.
    7. Jing Zeng, 2014. "Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors?," Working Paper Series of the Department of Economics, University of Konstanz 2014-20, Department of Economics, University of Konstanz.
    8. Kauppi, Heikki & Virtanen, Timo, 2021. "Boosting nonlinear predictability of macroeconomic time series," International Journal of Forecasting, Elsevier, vol. 37(1), pages 151-170.
    9. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    10. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    11. Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
    12. Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions in Germany With Boosted Regression Trees," Macroeconomics and Finance Series 201505, University of Hamburg, Department of Socioeconomics.
    13. Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
    14. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    15. Lahiri, Kajal & Yang, Cheng, 2022. "Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York," International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
    16. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    17. Guilherme Schultz Lindenmeyer & Hudson Silva Torrent, 2024. "Boosting and Predictability of Macroeconomic Variables: Evidence from Brazil," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 377-409, July.
    18. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    19. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
    20. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.

    More about this item

    Keywords

    boosting; economic forecasting; industrial production;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:67608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.