The Role of Investor Sentiment in Forecasting Housing Returns in China: A Machine Learning Approach
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Other versions of this item:
- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022. "The role of investor sentiment in forecasting housing returns in China: A machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
References listed on IDEAS
- Korobilis, Dimitris, 2013.
"Hierarchical shrinkage priors for dynamic regressions with many predictors,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
- Korobilis, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," MPRA Paper 30380, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," LIDAM Discussion Papers CORE 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2011. "Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors," Working Paper series 21_11, Rimini Centre for Economic Analysis.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Jim Clayton & David Ling & Andy Naranjo, 2009. "Commercial Real Estate Valuation: Fundamentals Versus Investor Sentiment," The Journal of Real Estate Finance and Economics, Springer, vol. 38(1), pages 5-37, January.
- Afees A. Salisu & Rangan Gupta, 2021.
"How Do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch,"
Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4286-4311, December.
- Afees A. Salisu & Rangan Gupta, 2019. "How do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Working Papers 201946, University of Pretoria, Department of Economics.
- Oguzhan Cepni & I. Ethem Guney, 2019. "Nowcasting emerging market’s GDP: the importance of dimension reduction techniques," Applied Economics Letters, Taylor & Francis Journals, vol. 26(20), pages 1670-1674, November.
- Gao, Zhenyu & Ren, Haohan & Zhang, Bohui, 2020. "Googling Investor Sentiment around the World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(2), pages 549-580, March.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Malcolm Baker & Jeffrey Wurgler, 2006.
"Investor Sentiment and the Cross‐Section of Stock Returns,"
Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
- Malcolm Baker & Jeffrey Wurgler, 2004. "Investor Sentiment and the Cross-Section of Stock Returns," NBER Working Papers 10449, National Bureau of Economic Research, Inc.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Robert J. Shiller, 2007.
"Understanding recent trends in house prices and homeownership,"
Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 89-123.
- Robert J. Shiller, 2007. "Understanding Recent Trends in House Prices and Home Ownership," NBER Working Papers 13553, National Bureau of Economic Research, Inc.
- Shiller, Robert J., 2007. "Understanding Recent Trends in House Prices and Home Ownership," Working Papers 28, Yale University, Department of Economics.
- Robert J. Shiller, 2007. "Understanding Recent Trends in House Prices and Home Ownership," Cowles Foundation Discussion Papers 1630, Cowles Foundation for Research in Economics, Yale University, revised Oct 2007.
- Lena Magnusson Turner & Terje Wessel, 2019. "Housing market filtering in the Oslo region: pro-market housing policies in a Nordic welfare-state context," International Journal of Housing Policy, Taylor & Francis Journals, vol. 19(4), pages 483-508, October.
- Chow Sheung-Chi & Cunado Juncal & Gupta Rangan & Wong Wing-Keung, 2018.
"Causal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-15, April.
- Sheung-Chi Chow & Juncal Cunado & Rangan Gupta & Wing-Keung Wong, 2016. "Causal Relationships between Economic Policy Uncertainty and Housing Market Returns in China and India: Evidence from Linear and Nonlinear Panel and Time Series Models," Working Papers 201674, University of Pretoria, Department of Economics.
- Case, Karl E & Shiller, Robert J, 1989.
"The Efficiency of the Market for Single-Family Homes,"
American Economic Review, American Economic Association, vol. 79(1), pages 125-137, March.
- Karl E. Case & Robert J. Shiller, 1988. "The Efficiency of the Market for Single-Family Homes," NBER Working Papers 2506, National Bureau of Economic Research, Inc.
- Fulong Wu, 2015. "Commodification and housing market cycles in Chinese cities," International Journal of Housing Policy, Taylor & Francis Journals, vol. 15(1), pages 6-26, January.
- Sanders, Anthony, 2008. "The subprime crisis and its role in the financial crisis," Journal of Housing Economics, Elsevier, vol. 17(4), pages 254-261, December.
- Korobilis, D, 2017.
"Forecasting with many predictors using message passing algorithms,"
Essex Finance Centre Working Papers
19565, University of Essex, Essex Business School.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Kouwenberg, Roy & Zwinkels, Remco, 2014. "Forecasting the US housing market," International Journal of Forecasting, Elsevier, vol. 30(3), pages 415-425.
- Lasse Bork & Stig V. Møller, 2018.
"Housing Price Forecastability: A Factor Analysis,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 46(3), pages 582-611, September.
- Lasse Bork & Stig V. Møller, 2012. "Housing price forecastability: A factor analysis," CREATES Research Papers 2012-27, Department of Economics and Business Economics, Aarhus University.
- Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
- Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.
- Robert J. Shiller, 2007.
"Understanding recent trends in house prices and homeownership,"
Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 89-123.
- Robert J. Shiller, 2007. "Understanding Recent Trends in House Prices and Home Ownership," Cowles Foundation Discussion Papers 1630, Cowles Foundation for Research in Economics, Yale University, revised Oct 2007.
- Robert Shiller, 2007. "Understanding Recent Trends in House Prices and Home Ownership," Yale School of Management Working Papers amz2557, Yale School of Management, revised 01 Nov 2007.
- Robert J. Shiller, 2007. "Understanding Recent Trends in House Prices and Home Ownership," NBER Working Papers 13553, National Bureau of Economic Research, Inc.
- Shiller, Robert J., 2007. "Understanding Recent Trends in House Prices and Home Ownership," Working Papers 28, Yale University, Department of Economics.
- McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
- Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-based commercial real estate forecasting with Google search volume data," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 32(6), pages 540-569, August.
- Korobilis, Dimitris, 2019.
"High-dimensional macroeconomic forecasting using message passing algorithms,"
MPRA Paper
96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019-07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Karl E. Case & Robert J. Shiller, 1990.
"Forecasting Prices and Excess Returns in the Housing Market,"
Real Estate Economics, American Real Estate and Urban Economics Association, vol. 18(3), pages 253-273, September.
- Karl E. Case & Robert J. Shiller, 1990. "Forecasting Prices and Excess Returns in the Housing Market," NBER Working Papers 3368, National Bureau of Economic Research, Inc.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2013. "Pooling Versus Model Selection For Nowcasting Gdp With Many Predictors: Empirical Evidence For Six Industrialized Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 392-411, April.
- Gary Gorton, 2009.
"The Subprime Panic,"
European Financial Management, European Financial Management Association, vol. 15(1), pages 10-46, January.
- Gary B. Gorton, 2008. "The Subprime Panic," NBER Working Papers 14398, National Bureau of Economic Research, Inc.
- Fulong Wu & Jie Chen & Fenghua Pan & Nick Gallent & Fangzhu Zhang, 2020. "Assetization: The Chinese Path to Housing Financialization," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 110(5), pages 1483-1499, September.
- Glaeser, Edward L. & Gyourko, Joseph & Morales, Eduardo & Nathanson, Charles G., 2014. "Housing dynamics: An urban approach," Journal of Urban Economics, Elsevier, vol. 81(C), pages 45-56.
- Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019.
"Manager sentiment and stock returns,"
Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
- Fuwei Jiang & Joshua Lee & Xiumin Martin & Guofu Zhou, 2019. "Manager sentiment and stock returns," CEMA Working Papers 677, China Economics and Management Academy, Central University of Finance and Economics.
- Eichengreen, Barry & Mody, Ashoka & Nedeljkovic, Milan & Sarno, Lucio, 2012.
"How the Subprime Crisis went global: Evidence from bank credit default swap spreads,"
Journal of International Money and Finance, Elsevier, vol. 31(5), pages 1299-1318.
- Barry Eichengreen & Ashoka Mody & Milan Nedeljkovic & Lucio Sarno, 2009. "How the Subprime Crisis Went Global: Evidence from Bank Credit Default Swap Spreads," NBER Working Papers 14904, National Bureau of Economic Research, Inc.
- Barry Eichengreen & Ashoka Mody & Milan Nedeljkovic & Lucio Sarno, 2012. "How the Subprime Crisis Went Global: Evidence from Bank Credit Default Swap Spreads," Working papers 21, National Bank of Serbia.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Chow Sheung-Chi & Cunado Juncal & Gupta Rangan & Wong Wing-Keung, 2018.
"Causal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-15, April.
- Chow Sheung-Chi & Cunado Juncal & Gupta Rangan & Wong Wing-Keung, 2018. "Causal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-15, April.
- Sheung-Chi Chow & Juncal Cunado & Rangan Gupta & Wing-Keung Wong, 2016. "Causal Relationships between Economic Policy Uncertainty and Housing Market Returns in China and India: Evidence from Linear and Nonlinear Panel and Time Series Models," Working Papers 201674, University of Pretoria, Department of Economics.
- Çepni, Oğuzhan & Guney, I. Ethem & Gupta, Rangan & Wohar, Mark E., 2020. "The role of an aligned investor sentiment index in predicting bond risk premia of the U.S," Journal of Financial Markets, Elsevier, vol. 51(C).
- Lena Magnusson Turner & Terje Wessel, 2019. "Housing market filtering in the Oslo region: pro-market housing policies in a Nordic welfare-state context," European Journal of Housing Policy, Taylor and Francis Journals, vol. 19(4), pages 483-508, October.
- Marian Alexander Dietzel & Nicole Braun & Wolfgang Schäfers, 2014. "Sentiment-Based Commercial Real Estate Forecasting with Google Search Volume Data," ERES eres2014_17, European Real Estate Society (ERES).
- Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015.
"Investor Sentiment Aligned: A Powerful Predictor of Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
- Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," CEMA Working Papers 676, China Economics and Management Academy, Central University of Finance and Economics.
- Hsing, You-tien, 2010. "The Great Urban Transformation: Politics of Land and Property in China," OUP Catalogue, Oxford University Press, number 9780199568048.
- Frederik Kunze & Tobias Basse & Miguel Rodriguez Gonzalez & Günter Vornholz, 2020. "Forward-looking financial risk management and the housing market in the United Kingdom: is there a role for sentiment indicators?," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 21(5), pages 659-678, September.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
- Chi-Wei Su & Xu-Yu Cai & Ran Tao, 2020. "Can Stock Investor Sentiment Be Contagious in China?," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2020.
"A New Index of Housing Sentiment,"
Management Science, INFORMS, vol. 66(4), pages 1563-1583, April.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2016. "A New Index of Housing Sentiment," CREATES Research Papers 2016-32, Department of Economics and Business Economics, Aarhus University.
- Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
- Allen C. Goodman & Thomas G. Thibodeau, 2007. "The Spatial Proximity of Metropolitan Area Housing Submarkets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 35(2), pages 209-232, June.
- Gianluca Marcato & Anupam Nanda, 2016. "Information Content and Forecasting Ability of Sentiment Indicators: Case of Real Estate Market," Journal of Real Estate Research, American Real Estate Society, vol. 38(2), pages 165-204.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Croce, Roberto M. & Haurin, Donald R., 2009. "Predicting turning points in the housing market," Journal of Housing Economics, Elsevier, vol. 18(4), pages 281-293, December.
- Tsai, I-Chun & Chiang, Shu-Hen, 2019. "Exuberance and spillovers in housing markets: Evidence from first- and second-tier cities in China," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 75-86.
- Jochen Hausler & Jessica Ruscheinsky & Marcel Lang, 2018. "News-based sentiment analysis in real estate: a machine learning approach," Journal of Property Research, Taylor & Francis Journals, vol. 35(4), pages 344-371, October.
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- John R. Logan & Yanjie Bian & Fuqin Bian, 1999. "Housing inequality in urban China in the 1990s," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 23(1), pages 7-25, March.
- Fulong Wu, 2015. "Commodification and housing market cycles in Chinese cities," European Journal of Housing Policy, Taylor and Francis Journals, vol. 15(1), pages 6-26, January.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- repec:arz:wpaper:eres2014-17 is not listed on IDEAS
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohammad Abdullah & Mohammad Ashraful Ferdous Chowdhury & Ajim Uddin & Syed Moudud‐Ul‐Huq, 2023. "Forecasting nonperforming loans using machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1664-1689, November.
- Basse, Tobias & Desmyter, Steven & Saft, Danilo & Wegener, Christoph, 2023. "Leading indicators for the US housing market: New empirical evidence and thoughts about implications for risk managers and ESG investors," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Banerjee, Ameet Kumar & Pradhan, H.K. & Akhtaruzzaman, Md & Sensoy, Ahmet & Dann, Susan, 2024. "Anatomy of sovereign yield behaviour using textual news," Research in International Business and Finance, Elsevier, vol. 71(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Çepni, Oğuzhan & Guney, I. Ethem & Gupta, Rangan & Wohar, Mark E., 2020. "The role of an aligned investor sentiment index in predicting bond risk premia of the U.S," Journal of Financial Markets, Elsevier, vol. 51(C).
- Basse, Tobias & Desmyter, Steven & Saft, Danilo & Wegener, Christoph, 2023. "Leading indicators for the US housing market: New empirical evidence and thoughts about implications for risk managers and ESG investors," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2020.
"A New Index of Housing Sentiment,"
Management Science, INFORMS, vol. 66(4), pages 1563-1583, April.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2016. "A New Index of Housing Sentiment," CREATES Research Papers 2016-32, Department of Economics and Business Economics, Aarhus University.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
- Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024.
"Search and Predictability of Prices in the Housing Market,"
Management Science, INFORMS, vol. 70(1), pages 415-438, January.
- Timmermann, Allan & Møller, Stig & Pedersen, Thomas & Schütte, Erik Christian Montes, 2021. "Search and Predictability of Prices in the Housing Market," CEPR Discussion Papers 15875, C.E.P.R. Discussion Papers.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Dimitris Korobilis, 2018.
"Machine Learning Macroeconometrics: A Primer,"
Working Paper series
18-30, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Steffen Heinig & Anupam Nanda & Sotiris Tsolacos, 2016. "Which Sentiment Indicators Matter? An Analysis of the European Commercial Real Estate Market," ICMA Centre Discussion Papers in Finance icma-dp2016-04, Henley Business School, University of Reading.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
- Shulin Shen & Yiyi Zhao & Jindong Pang, 2024. "Local Housing Market Sentiments and Returns: Evidence from China," The Journal of Real Estate Finance and Economics, Springer, vol. 68(3), pages 488-522, April.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & M. Hasan Yilmaz, 2021.
"Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1214-1229, November.
- Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & Muhammed Hasan Yilmaz, 2020. "Do Local and Global Factors Impact the Emerging Markets’s Sovereign Yield Curves? Evidence from a Data-Rich Environment," Working Papers 2004, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
More about this item
Keywords
Housing prices; Investor sentiment; Bayesian shrinkage; Time-varying parameter model;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-06-22 (Big Data)
- NEP-CMP-2020-06-22 (Computational Economics)
- NEP-FOR-2020-06-22 (Forecasting)
- NEP-ORE-2020-06-22 (Operations Research)
- NEP-URE-2020-06-22 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202055. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.