A two‐stage Bayesian network model for corporate bankruptcy prediction
Author
Abstract
Suggested Citation
DOI: 10.1002/ijfe.2162
Download full text from publisher
References listed on IDEAS
- Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008.
"In Search of Distress Risk,"
Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
- Campbell, John Y. & Hilscher, Jens & Szilagyi, Jan, 2005. "In search of distress risk," Discussion Paper Series 1: Economic Studies 2005,27, Deutsche Bundesbank.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2005. "In Searach of Distress Risk," Harvard Institute of Economic Research Working Papers 2081, Harvard - Institute of Economic Research.
- Szilagyi, Jan & Hilscher, Jens & Campbell, John, 2008. "In Search of Distress Risk," Scholarly Articles 3199070, Harvard University Department of Economics.
- John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2006. "In Search of Distress Risk," NBER Working Papers 12362, National Bureau of Economic Research, Inc.
- Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
- Itay Goldstein & Wei Jiang & G Andrew Karolyi, 2019. "To FinTech and Beyond," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1647-1661.
- Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
- Mark A Chen & Qinxi Wu & Baozhong Yang, 2019. "How Valuable Is FinTech Innovation?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 2062-2106.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- A. Adam Ding & Shaonan Tian & Yan Yu & Hui Guo, 2012. "A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 990-1003, September.
- Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
- du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
- Liang, Deron & Lu, Chia-Chi & Tsai, Chih-Fong & Shih, Guan-An, 2016. "Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study," European Journal of Operational Research, Elsevier, vol. 252(2), pages 561-572.
- Engelmann, Bernd & Hayden, Evelyn & Tasche, Dirk, 2003. "Measuring the Discriminative Power of Rating Systems," Discussion Paper Series 2: Banking and Financial Studies 2003,01, Deutsche Bundesbank.
- Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
- Paola Cerchiello & Giancarlo Nicola & Samuel Rönnqvist & Peter Sarlin, 2017. "Deep Learning Bank Distress from News and Numerical Financial Data," DEM Working Papers Series 140, University of Pavia, Department of Economics and Management.
- Sudheer Chava & Robert A. Jarrow, 2008.
"Bankruptcy Prediction with Industry Effects,"
World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549,
World Scientific Publishing Co. Pte. Ltd..
- Sudheer Chava & Robert A. Jarrow, 2004. "Bankruptcy Prediction with Industry Effects," Review of Finance, European Finance Association, vol. 8(4), pages 537-569.
- Rastin Matin & Casper Hansen & Christian Hansen & Pia M{o}lgaard, 2018. "Predicting Distresses using Deep Learning of Text Segments in Annual Reports," Papers 1811.05270, arXiv.org.
- Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
- Gogas, Periklis & Papadimitriou, Theophilos & Agrapetidou, Anna, 2018. "Forecasting bank failures and stress testing: A machine learning approach," International Journal of Forecasting, Elsevier, vol. 34(3), pages 440-455.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Martina Mokrišová & Jarmila Horváthová, 2023. "Domain Knowledge Features versus LASSO Features in Predicting Risk of Corporate Bankruptcy—DEA Approach," Risks, MDPI, vol. 11(11), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
- Bai, Qing & Tian, Shaonan, 2020. "Innovate or die: Corporate innovation and bankruptcy forecasts," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 88-108.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
- Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
- Ruey-Ching Hwang & Jhao-Siang Siao & Huimin Chung & C. Chu, 2011. "Assessing bankruptcy prediction models via information content of technical inefficiency," Journal of Productivity Analysis, Springer, vol. 36(3), pages 263-273, December.
- Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
- Tian, Shaonan & Yu, Yan, 2017. "Financial ratios and bankruptcy predictions: An international evidence," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 510-526.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
- Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- Abinzano, Isabel & Gonzalez-Urteaga, Ana & Muga, Luis & Sanchez, Santiago, 2020. "Performance of default-risk measures: the sample matters," Journal of Banking & Finance, Elsevier, vol. 120(C).
- Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
- Viral Acharya & Sergei A. Davydenko & Ilya A. Strebulaev, 2012.
"Cash Holdings and Credit Risk,"
The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3572-3609.
- Acharya, Viral & Strebulaev, Ilya & Davydenko, Sergei A., 2009. "Cash Holdings and Credit Risk," CEPR Discussion Papers 7125, C.E.P.R. Discussion Papers.
- Viral V. Acharya & Sergei A. Davydenko & Ilya A. Strebulaev, 2011. "Cash Holdings and Credit Risk," NBER Working Papers 16995, National Bureau of Economic Research, Inc.
- Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
- Jiang-Chuan Huang & Hueh-Chen Lin & Daniel Huang, 2022. "The Effect of Operating Cash Flow on the Likelihood and Duration of Survival for Marginally Distressed Firms in Taiwan," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:1:p:455-472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.