Forecast evaluation with factor-augmented models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Breitung, Jörg & Eickmeier, Sandra, 2011.
"Testing for structural breaks in dynamic factor models,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
- Breitung, Jörg & Eickmeier, Sandra, 2009. "Testing for structural breaks in dynamic factor models," Discussion Paper Series 1: Economic Studies 2009,05, Deutsche Bundesbank.
- Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
- Stock, James H. & Watson, Mark W., 1999.
"Forecasting inflation,"
Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
- James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Ludvigson, Sydney C. & Ng, Serena, 2007.
"The empirical risk-return relation: A factor analysis approach,"
Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
- Sydney C. Ludvigson & Serena Ng, 2005. "The Empirical Risk-Return Relation: A Factor Analysis Approach," NBER Working Papers 11477, National Bureau of Economic Research, Inc.
- Sydney Ludvigson & Serena Ng, 2006. "The Empirical Risk-Return Relation: a factor analysis approach," 2006 Meeting Papers 236, Society for Economic Dynamics.
- Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013.
"A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers 11/12, Institute for Fiscal Studies.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers CWP11/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Busetti, Fabio & Marcucci, Juri, 2013.
"Comparing forecast accuracy: A Monte Carlo investigation,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
- Fabio Busetti & Juri Marcucci & Giovanni Veronese, 2009. "Comparing forecast accuracy: A Monte Carlo investigation," Temi di discussione (Economic working papers) 723, Bank of Italy, Economic Research and International Relations Area.
- Gonçalves, Sílvia & Perron, Benoit, 2014.
"Bootstrapping factor-augmented regression models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
- Silvia Gonçalves & Benoit Perron, 2012. "Bootstrapping factor-augmented regression models," CIRANO Working Papers 2012s-12, CIRANO.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Clark, Todd E. & McCracken, Michael W., 2001.
"Tests of equal forecast accuracy and encompassing for nested models,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
- Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
- Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Corradi, Valentina & Swanson, Norman R., 2014.
"Testing for structural stability of factor augmented forecasting models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
- Valentina Corradi & Norman Swanson, 2013. "Testing for Structural Stability of Factor Augmented Forecasting Models," Departmental Working Papers 201314, Rutgers University, Department of Economics.
- Corradi, Valentina & Swanson, Norman R., 2006.
"Predictive density and conditional confidence interval accuracy tests,"
Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
- Valentina Corradi & Norman Swanson, 2004. "Predective Density and Conditional Confidence Interval Accuracy Tests," Departmental Working Papers 200423, Rutgers University, Department of Economics.
- Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
- Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
- Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
- Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
- Sean P. Grover & Michael W. McCracken, 2014. "Factor-based prediction of industry-wide bank stress," Review, Federal Reserve Bank of St. Louis, vol. 96(2), pages 173-194.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017.
"Tests of equal accuracy for nested models with estimated factors,"
Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
- Silvia Goncalves & Michael W. McCracken & Benoit Perron, 2015. "Tests of Equal Accuracy for Nested Models with Estimated Factors," Working Papers 2015-25, Federal Reserve Bank of St. Louis.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Jack Fosten, 2017.
"Model selection with estimated factors and idiosyncratic components,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1087-1106, September.
- Jack Fosten, 2016. "Model selection with factors and variables," University of East Anglia School of Economics Working Paper Series 2016-07, School of Economics, University of East Anglia, Norwich, UK..
- Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017.
"Tests of equal accuracy for nested models with estimated factors,"
Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
- Silvia Goncalves & Michael W. McCracken & Benoit Perron, 2015. "Tests of Equal Accuracy for Nested Models with Estimated Factors," Working Papers 2015-25, Federal Reserve Bank of St. Louis.
- repec:cte:wsrepe:23974 is not listed on IDEAS
- Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Corradi, Valentina & Swanson, Norman R., 2014.
"Testing for structural stability of factor augmented forecasting models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
- Valentina Corradi & Norman Swanson, 2013. "Testing for Structural Stability of Factor Augmented Forecasting Models," Departmental Working Papers 201314, Rutgers University, Department of Economics.
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2017.
"Determining the number of factors after stationary univariate transformations,"
Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
- Corona, Francisco & Poncela, Maria Pilar, 2016. "Determining the number of factors after stationary univariate transformations," DES - Working Papers. Statistics and Econometrics. WS ws1602, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
- Kutateladze, Varlam, 2022. "The kernel trick for nonlinear factor modeling," International Journal of Forecasting, Elsevier, vol. 38(1), pages 165-177.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023.
"Estimation of a dynamic multi-level factor model with possible long-range dependence,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
- Rodríguez Caballero, Carlos Vladimir, 2017. "Estimation of a Dynamic Multilevel Factor Model with possible long-range dependence," DES - Working Papers. Statistics and Econometrics. WS 24614, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Varlam Kutateladze, 2021. "The Kernel Trick for Nonlinear Factor Modeling," Papers 2103.01266, arXiv.org.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- repec:dau:papers:123456789/11663 is not listed on IDEAS
- Clark, Todd & McCracken, Michael, 2013.
"Advances in Forecast Evaluation,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201,
Elsevier.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers (Old Series) 1120, Federal Reserve Bank of Cleveland.
- Todd E. Clark & Michael W. McCracken, 2011. "Advances in forecast evaluation," Working Papers 2011-025, Federal Reserve Bank of St. Louis.
- Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017.
"The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey,"
Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
- Mogliani, M. & Brunhes-Lesage, V. & Darné, O. & Pluyaud, B., 2014. "New estimate of the MIBA forecasting model. Modeling first-release GDP using the Banque de France's Monthly Business Survey and the “blocking” approach," Working papers 473, Banque de France.
More about this item
Keywords
boostrap; diffusion index; factor model; predictive ability;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-07-09 (Econometrics)
- NEP-ETS-2016-07-09 (Econometric Time Series)
- NEP-FOR-2016-07-09 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uea:ueaeco:2016_05. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cara Liggins (email available below). General contact details of provider: https://edirc.repec.org/data/esueauk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.