IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v1y2008i1p3-18d1791.html
   My bibliography  Save this item

Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Barampouti, E.M. & Mai, S. & Malamis, D. & Moustakas, K. & Loizidou, M., 2019. "Liquid biofuels from the organic fraction of municipal solid waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 298-314.
  2. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
  3. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
  4. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
  5. Zheng, Longyu & Hou, Yanfei & Li, Wu & Yang, Sen & Li, Qing & Yu, Ziniu, 2012. "Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes," Energy, Elsevier, vol. 47(1), pages 225-229.
  6. Dacinia Crina Petrescu & Ruxandra Mălina Petrescu-Mag & Dorin Iosif Manciula & Ioan Alin Nistor & Veronica Ioana Ilieș, 2018. "Wastewater Reflections in Consumer Mind: Evidence from Sewage Services Consumer Behaviour," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
  7. Jeeban Poudel & Malesh Shah & Sujeeta Karki & Sea Cheon Oh, 2017. "Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols," Energies, MDPI, vol. 10(3), pages 1-13, February.
  8. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
  9. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
  10. Ambat, Indu & Srivastava, Varsha & Iftekhar, Sidra & Haapaniemi, Esa & Sillanpää, Mika, 2020. "Effect of different co-solvents on biodiesel production from various low-cost feedstocks using Sr–Al double oxides," Renewable Energy, Elsevier, vol. 146(C), pages 2158-2169.
  11. Nina Bruun & Fiseha Tesfaye & Jarl Hemming & Meheretu Jaleta Dirbeba & Leena Hupa, 2020. "Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils," Energies, MDPI, vol. 14(1), pages 1-14, December.
  12. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
  13. Lycourghiotis, Sotiris & Kordouli, Eleana & Kordulis, Christos & Bourikas, Kyriakos, 2021. "Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite," Renewable Energy, Elsevier, vol. 180(C), pages 773-786.
  14. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
  15. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
  16. Jincheng Ding & Benqiao He & Jianxin Li, 2011. "Biodiesel Production from Acidified Oils via Supercritical Methanol," Energies, MDPI, vol. 4(12), pages 1-12, December.
  17. Singhabhandhu, Ampaitepin & Tezuka, Tetsuo, 2010. "Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion," Energy, Elsevier, vol. 35(4), pages 1839-1847.
  18. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
  19. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
  20. Tacias-Pascacio, Veymar G. & Torrestiana-Sánchez, Beatriz & Dal Magro, Lucas & Virgen-Ortíz, Jose J. & Suárez-Ruíz, Francisco J. & Rodrigues, Rafael C. & Fernandez-Lafuente, Roberto, 2019. "Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization," Renewable Energy, Elsevier, vol. 135(C), pages 1-9.
  21. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
  22. Md Sufi Ullah Siddik Bhuyan & Abul Hasnat Md Ashraful Alam & Younghwan Chu & Yong Chan Seo, 2017. "Biodiesel Production Potential from Littered Edible Oil Fraction Using Directly Synthesized S-TiO 2 /MCM-41 Catalyst in Esterification Process via Non-Catalytic Subcritical Hydrolysis," Energies, MDPI, vol. 10(9), pages 1-17, August.
  23. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
  24. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
  25. Pradhan, Anup & Mbohwa, Charles, 2014. "Development of biofuels in South Africa: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1089-1100.
  26. Wen-Tien Tsai, 2019. "Mandatory Recycling of Waste Cooking Oil from Residential and Commercial Sectors in Taiwan," Resources, MDPI, vol. 8(1), pages 1-11, February.
  27. Abbas Hojati & Alireza Shirneshan, 2020. "Effect of compression ratio variation and waste cooking oil methyl ester on the combustion and emission characteristics of an engine," Energy & Environment, , vol. 31(7), pages 1257-1280, November.
  28. Munazza Jabeen & Mamoona Munir & Muhammad Mujtaba Abbas & Mushtaq Ahmad & Amir Waseem & Muhammad Saeed & Md Abul Kalam & Muhammad Zafar & Shazia Sultana & Abdullah Mohamed & Bisha Chaudhry, 2022. "Sustainable Production of Biodiesel from Novel and Non-Edible Ailanthus altissima (Mill.) Seed Oil from Green and Recyclable Potassium Hydroxide Activated Ailanthus Cake and Cadmium Sulfide Catalyst," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
  29. Marcos A. Coronado & Gisela Montero & Conrado García & Benjamín Valdez & Ramón Ayala & Armando Pérez, 2017. "Quality Assessment of Biodiesel Blends Proposed by the New Mexican Policy Framework," Energies, MDPI, vol. 10(5), pages 1-14, May.
  30. Md. Monirul Islam Chowdhury & Syed Masiur Rahman & Ismaila Rimi Abubakar & Yusuf A. Aina & Md. Arif Hasan & A. N. Khondaker, 2021. "A review of policies and initiatives for climate change mitigation and environmental sustainability in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1133-1161, February.
  31. Silva, Sónia M. & Peixoto, Andreia F. & Freire, Cristina, 2020. "Organosulfonic acid functionalized montmorillonites as solid catalysts for (trans) esterification of free fatty acids and (waste) oils," Renewable Energy, Elsevier, vol. 146(C), pages 2416-2429.
  32. Kumaran, P. & Mazlini, Nur & Hussein, Ibrahim & Nazrain, M. & Khairul, M., 2011. "Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel," Energy, Elsevier, vol. 36(3), pages 1386-1393.
  33. Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
  34. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
  35. Capuano, D. & Costa, M. & Di Fraia, S. & Massarotti, N. & Vanoli, L., 2017. "Direct use of waste vegetable oil in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 759-770.
  36. Eugenia Guadalupe Ortiz Lechuga & Mauro Rodríguez Zúñiga & Katiushka Arévalo Niño, 2020. "Efficiency Evaluation on the Influence of Washing Methods for Biodiesel Produced from High Free Fatty Acid Waste Vegetable Oils through Selected Quality Parameters," Energies, MDPI, vol. 13(23), pages 1-14, November.
  37. Asarudheen Abdudeen & Mohamed Y. E. Selim & Manigandan Sekar & Mahmoud Elgendi, 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review," Energies, MDPI, vol. 16(2), pages 1-28, January.
  38. Teuku Meurah Indra Riayatsyah & Hwai Chyuan Ong & Wen Tong Chong & Lisa Aditya & Heri Hermansyah & Teuku Meurah Indra Mahlia, 2017. "Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production," Energies, MDPI, vol. 10(7), pages 1-21, June.
  39. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
  40. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
  41. Sharon, H. & Karuppasamy, K. & Soban Kumar, D.R. & Sundaresan, A., 2012. "A test on DI diesel engine fueled with methyl esters of used palm oil," Renewable Energy, Elsevier, vol. 47(C), pages 160-166.
  42. Chanthon, Narita & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Appamana, Weerinda & Quitain, Armando T. & Assabumrungrat, Suttichai, 2021. "High-efficiency biodiesel production using rotating tube reactor: New insight of operating parameters on hydrodynamic regime and biodiesel yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  43. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
  44. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
  45. Karmee, Sanjib Kumar, 2016. "Liquid biofuels from food waste: Current trends, prospect and limitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 945-953.
  46. Sinan Erdogan & Cenk Sayin, 2018. "Selection of the Most Suitable Alternative Fuel Depending on the Fuel Characteristics and Price by the Hybrid MCDM Method," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
  47. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
  48. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
  49. Hongzhan Xie & Lanbo Song & Yizhi Xie & Dong Pi & Chunyu Shao & Qizhao Lin, 2015. "An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber," Energies, MDPI, vol. 8(6), pages 1-21, June.
  50. Norouzian Baghani, Abbas & Sadjadi, Sodeh & Yaghmaeian, Kamyar & Hossein Mahvi, Amir & Yunesian, Masud & Nabizadeh, Ramin, 2022. "Solid alcohol biofuel based on waste cooking oil: Preparation, properties, micromorphology, heating value optimization and its application as candle wax," Renewable Energy, Elsevier, vol. 192(C), pages 617-630.
  51. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
  52. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
  53. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.
  54. Xue, Jinlin, 2013. "Combustion characteristics, engine performances and emissions of waste edible oil biodiesel in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 350-365.
  55. Badoei-dalfard, Arastoo & Malekabadi, Saeid & Karami, Zahra & Sargazi, Ghasem, 2019. "Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil," Renewable Energy, Elsevier, vol. 141(C), pages 874-882.
  56. Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
  57. Doğan, Tuba Hatice, 2016. "The testing of the effects of cooking conditions on the quality of biodiesel produced from waste cooking oils," Renewable Energy, Elsevier, vol. 94(C), pages 466-473.
  58. Gómez-Trejo-López, Emmanuelle & González-Díaz, María Ortencia & Aguilar-Vega, Manuel, 2022. "Waste cooking oil transesterification by sulfonated polyphenylsulfone catalytic membrane: Characterization and biodiesel production yield," Renewable Energy, Elsevier, vol. 182(C), pages 1219-1227.
  59. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.