IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p265-d91266.html
   My bibliography  Save this article

Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols

Author

Listed:
  • Jeeban Poudel

    (Waste & Biomass Energy Technology Center, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 31080, Korea)

  • Malesh Shah

    (Department of Mechanical Engineering, Kathmandu University, 45200 Dhulikhel, Nepal)

  • Sujeeta Karki

    (Department of Environmental Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 31080, Korea)

  • Sea Cheon Oh

    (Department of Environmental Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 31080, Korea)

Abstract

In this work, the characteristics of waste pig fat degradation using supercritical alcohols have been studied. Comparative analysis of the influence of supercritical methanol and supercritical ethanol as solvents on the transesterification was the primary focus of this research. The experiments were carried out with waste pig fat to alcohol weight ratios of 1:1.5 (molar ratio: 1:40.5 for methanol and 1:28 for ethanol), 1:2.0 (molar ratio: 1:54 for methanol and 1:37.5 for ethanol) and 1:2.5 (molar ratio: 1:67.5 for methanol and 1:47 for ethanol) at transesterification temperatures 250, 270 and 290 °C for holding time 0, 15, 30, 45 and 60 min. Increase in the transesterification and holding time increased the conversion while increase in alcohol amount from 1:1.5 to 1:2.0 and 1:2.5 had minimal effect on the conversion. Further, majority of the ester composition in using SCM as solvent falls in the carbon range of C17:0, C19:1 and C19:2 while that for SCE falls in the carbon range of C18:0, C20:1 and C20:2. Glycerol was only present while using SCM as solvent.

Suggested Citation

  • Jeeban Poudel & Malesh Shah & Sujeeta Karki & Sea Cheon Oh, 2017. "Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols," Energies, MDPI, vol. 10(3), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:265-:d:91266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeeban Poudel & Sea Cheon Oh, 2012. "Degradation Characteristics of Wood Using Supercritical Alcohols," Energies, MDPI, vol. 5(12), pages 1-15, November.
    2. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    3. Rahmat, Norhasyimi & Abdullah, Ahmad Zuhairi & Mohamed, Abdul Rahman, 2010. "Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 987-1000, April.
    4. Nawaraj Sanjel & Jae Hoi Gu & Sea Cheon Oh, 2014. "Transesterification Kinetics of Waste Vegetable Oil in Supercritical Alcohols," Energies, MDPI, vol. 7(4), pages 1-12, April.
    5. Tan, K.T. & Lee, K.T. & Mohamed, A.R., 2011. "Potential of waste palm cooking oil for catalyst-free biodiesel production," Energy, Elsevier, vol. 36(4), pages 2085-2088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeeban Poudel & Sujeeta Karki & Nawaraj Sanjel & Malesh Shah & Sea Cheon Oh, 2017. "Comparison of Biodiesel Obtained from Virgin Cooking Oil and Waste Cooking Oil Using Supercritical and Catalytic Transesterification," Energies, MDPI, vol. 10(4), pages 1-14, April.
    2. Hoang Chinh Nguyen & Dinh Thi My Huong & Horng-Yi Juan & Chia-Hung Su & Chien-Chung Chien, 2018. "Liquid Lipase-Catalyzed Esterification of Oleic Acid with Methanol for Biodiesel Production in the Presence of Superabsorbent Polymer: Optimization by Using Response Surface Methodology," Energies, MDPI, vol. 11(5), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    4. Beatrice, Carlo & Di Blasio, Gabriele & Lazzaro, Maurizio & Cannilla, Catia & Bonura, Giuseppe & Frusteri, Francesco & Asdrubali, Francesco & Baldinelli, Giorgio & Presciutti, Andrea & Fantozzi, Franc, 2013. "Technologies for energetic exploitation of biodiesel chain derived glycerol: Oxy-fuels production by catalytic conversion," Applied Energy, Elsevier, vol. 102(C), pages 63-71.
    5. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    6. Yee, Kian Fei & Mohamed, Abdul Rahman & Tan, Soon Huat, 2013. "A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 604-620.
    7. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    8. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    9. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    10. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    11. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    12. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    13. Eugenia Guadalupe Ortiz Lechuga & Mauro Rodríguez Zúñiga & Katiushka Arévalo Niño, 2020. "Efficiency Evaluation on the Influence of Washing Methods for Biodiesel Produced from High Free Fatty Acid Waste Vegetable Oils through Selected Quality Parameters," Energies, MDPI, vol. 13(23), pages 1-14, November.
    14. Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
    15. Ezebor, Francis & Khairuddean, Melati & Abdullah, Ahmad Zuhairi & Boey, Peng Lim, 2014. "Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters," Energy, Elsevier, vol. 70(C), pages 493-503.
    16. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    17. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    18. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    19. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    20. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:265-:d:91266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.