IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p828-d1032024.html
   My bibliography  Save this article

Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review

Author

Listed:
  • Asarudheen Abdudeen

    (Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Mohamed Y. E. Selim

    (Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
    National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates)

  • Manigandan Sekar

    (Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
    Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India)

  • Mahmoud Elgendi

    (Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
    National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
    Department of Mechanical Power Engineering and Energy, Faculty of Engineering, Minia University, Minia 61519, Egypt)

Abstract

Biofuel is an attractive alternative to fossil fuels since it is renewable and biodegradable—it is mainly made from edible and non-edible sources. Globally, the usage of renewable biofuels is expected to rise quickly. The rising production and use of biofuel has prompted an examination of its environmental impact. Biodiesel is a fatty acid methyl ester generated from sustainable lipid feedstock that substitutes petroleum-based diesel fuel. Non-food oils, such as Jatropha, waste cooking oil, and by-products of vegetable oil from refineries provide inexpensive feedstock for biodiesel manufacturing. Due to its increased oil yield, adequate fatty acid content, tolerance to various agro-climatic conditions, and short gestation period, Jatropha may be one of the most promoted oilseed crops worldwide. Furthermore, Jatropha can provide several economic and agronomic advantages because it is a biodegradable, renewable plant. This study examines whether Jatropha can be considered as the most preferable biofuel in the future. The study begins with an overview of current fuels, including their classifications, dynamic changes in consumption, advantages, and cross-examining the limitations to identify the significance of bringing an alternate fuel. Then we elaborate on the outlook of the Jatropha crop, followed by evaluating its availability, opportunity, and advantages over other biofuels. Subsequently, the extraction methods, including the transesterification process and integration methods for improving the efficiency of Jatropha fuel, are also reviewed in the paper. We also assess the current stage of Jatropha cultivation in different countries with its challenges. The review concludes with future perspectives and directions for research.

Suggested Citation

  • Asarudheen Abdudeen & Mohamed Y. E. Selim & Manigandan Sekar & Mahmoud Elgendi, 2023. "Jatropha’s Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review," Energies, MDPI, vol. 16(2), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:828-:d:1032024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gasparatos, A. & Mudombi, S. & Balde, B.S. & von Maltitz, G.P. & Johnson, F.X. & Romeu-Dalmau, C. & Jumbe, C. & Ochieng, C. & Luhanga, D. & Nyambane, A. & Rossignoli, C. & Jarzebski, M.P. & Dam Lam, R, 2022. "Local food security impacts of biofuel crop production in southern Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Divakara, B.N. & Upadhyaya, H.D. & Wani, S.P. & Gowda, C.L. Laxmipathi, 2010. "Biology and genetic improvement of Jatropha curcas L.: A review," Applied Energy, Elsevier, vol. 87(3), pages 732-742, March.
    3. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    4. Lim, Steven & Lee, Keat Teong, 2013. "Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study," Applied Energy, Elsevier, vol. 103(C), pages 712-720.
    5. Trivedi, Parthsarathi & Olcay, Hakan & Staples, Mark D. & Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Energy return on investment for alternative jet fuels," Applied Energy, Elsevier, vol. 141(C), pages 167-174.
    6. Castro Gonzáles, Nirza Fabiola, 2016. "International experiences with the cultivation of Jatropha curcas for biodiesel production," Energy, Elsevier, vol. 112(C), pages 1245-1258.
    7. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    8. Romijn, Henny A. & Caniëls, Marjolein C.J., 2011. "The Jatropha biofuels sector in Tanzania 2005-2009: Evolution towards sustainability?," Research Policy, Elsevier, vol. 40(4), pages 618-636, May.
    9. Sharma, Y.C. & Singh, B., 2009. "Development of biodiesel: Current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1646-1651, August.
    10. Brigitte Portner & Albrecht Ehrensperger & Zufan Nezir & Thomas Breu & Hans Hurni, 2014. "Biofuels for a Greener Economy? Insights from Jatropha Production in Northeastern Ethiopia," Sustainability, MDPI, vol. 6(9), pages 1-15, September.
    11. Remston Martis & Amani Al-Othman & Muhammad Tawalbeh & Malek Alkasrawi, 2020. "Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation," Energies, MDPI, vol. 13(22), pages 1-34, November.
    12. de Souza, Lorena Mendes & Mendes, Pietro A.S. & Aranda, Donato A.G., 2020. "Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1339-1351.
    13. Ewunie, Gebresilassie Asnake & Morken, John & Lekang, Odd Ivar & Yigezu, Zerihun Demrew, 2021. "Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Drew Shindell & Christopher J. Smith, 2019. "Climate and air-quality benefits of a realistic phase-out of fossil fuels," Nature, Nature, vol. 573(7774), pages 408-411, September.
    15. Eevera, T. & Rajendran, K. & Saradha, S., 2009. "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions," Renewable Energy, Elsevier, vol. 34(3), pages 762-765.
    16. Basili, Marcello & Fontini, Fulvio, 2012. "Biofuel from Jatropha curcas: Environmental sustainability and option value," Ecological Economics, Elsevier, vol. 78(C), pages 1-8.
    17. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    19. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    20. Liu, Guilin & Mai, Jianfeng, 2022. "Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios," Energy, Elsevier, vol. 251(C).
    21. Krumdieck, Susan & Page, Shannon & Dantas, André, 2010. "Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 306-322, June.
    22. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    23. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    24. Lim, Bo Yuan & Shamsudin, Rosnah & Baharudin, B.T. Hang Tuah & Yunus, Robiah, 2015. "A review of processing and machinery for Jatropha curcas L. fruits and seeds in biodiesel production: Harvesting, shelling, pretreatment and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 991-1002.
    25. Meher, L.C. & Churamani, C.P. & Arif, Md. & Ahmed, Z. & Naik, S.N., 2013. "Jatropha curcas as a renewable source for bio-fuels—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 397-407.
    26. Stokes, Leah C. & Breetz, Hanna L., 2018. "Politics in the U.S. energy transition: Case studies of solar, wind, biofuels and electric vehicles policy," Energy Policy, Elsevier, vol. 113(C), pages 76-86.
    27. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).
    28. Baral, Nawa Raj & Neupane, Pratikshya & Ale, Bhakta Bahadur & Quiroz-Arita, Carlos & Manandhar, Shishir & Bradley, Thomas H., 2020. "Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    29. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    2. Ewunie, Gebresilassie Asnake & Morken, John & Lekang, Odd Ivar & Yigezu, Zerihun Demrew, 2021. "Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    4. Habibullah, M. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Mofijur, M. & Mobarak, H.M. & Ashraful, A.M., 2015. "Potential of biodiesel as a renewable energy source in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 819-834.
    5. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    7. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    8. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    9. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    10. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    11. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    12. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    13. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    14. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    15. Kumar, Praveen & Srivastava, Vimal Chandra & Jha, Mithilesh Kumar, 2016. "Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 818-838.
    16. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    17. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    18. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    19. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    20. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:828-:d:1032024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.