IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p877-d103034.html
   My bibliography  Save this article

Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production

Author

Listed:
  • Teuku Meurah Indra Riayatsyah

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Hwai Chyuan Ong

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Wen Tong Chong

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Lisa Aditya

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Heri Hermansyah

    (Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Teuku Meurah Indra Mahlia

    (Department of Mechanical Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
    Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam)

Abstract

The use of non-edible, second-generation feedstocks for the production of biodiesel has been an active area of research, due to its potential in replacing fossil diesel as well as its environmentally friendly qualities. Despite this, more needs to be done to remove the technical barriers associated with biodiesel production and usage, to increase its quality as well as to widen the choice of available feedstocks; so as to avoid over-dependence on limited sources. This paper assesses the feasibility of using a local plant, Reutealis trisperma , whose seeds contain a high percentage of oil of up to 51%, as one of the possible feedstocks. The techno-economic and sensitivity analysis of biodiesel production from Reutealis trisperma oil as well as implementation aspects and environmental effects of the biodiesel plant are discussed. Analysis indicates that the 50 kt Reutealis trisperma biodiesel production plant has a life cycle cost of approximately $710 million, yielding a payback period of 4.34 years. The unit cost of the biodiesel is calculated to be $0.69/L with the feedstock cost accounting for the bulk of the cost. The most important finding from this study is that the biodiesel from Reutealis trisperma oil can compete with fossil diesel, provided that appropriate policies of tax exemptions and subsidies can be put in place. To conclude, further studies on biodiesel production and its limitations are necessary before the use of biodiesel from Reutealis trisperma oil may be used as a fuel source to replace fossil diesel.

Suggested Citation

  • Teuku Meurah Indra Riayatsyah & Hwai Chyuan Ong & Wen Tong Chong & Lisa Aditya & Heri Hermansyah & Teuku Meurah Indra Mahlia, 2017. "Life Cycle Cost and Sensitivity Analysis of Reutealis trisperma as Non-Edible Feedstock for Future Biodiesel Production," Energies, MDPI, vol. 10(7), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:877-:d:103034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Torres-Rodríguez, Daniela A. & Romero-Ibarra, Issis C. & Ibarra, Ilich A. & Pfeiffer, Heriberto, 2016. "Biodiesel production from soybean and Jatropha oils using cesium impregnated sodium zirconate as a heterogeneous base catalyst," Renewable Energy, Elsevier, vol. 93(C), pages 323-331.
    2. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    3. Wouter M. J. Achten & Navin Sharma & Bart Muys & Erik Mathijs & Paul Vantomme, 2014. "Opportunities and Constraints of Promoting New Tree Crops—Lessons Learned from Jatropha," Sustainability, MDPI, vol. 6(6), pages 1-19, May.
    4. Liu, Chang & Lv, Pengmei & Yuan, Zhenhong & Yan, Fang & Luo, Wen, 2010. "The nanometer magnetic solid base catalyst for production of biodiesel," Renewable Energy, Elsevier, vol. 35(7), pages 1531-1536.
    5. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    6. Shenjun Qin & Yuzhuang Sun & Changlin Shi & Leqin He & Yuan Meng & Xiaohui Ren, 2012. "Deacidification of Pistacia chinensis Oil as a Promising Non-Edible Feedstock for Biodiesel Production in China," Energies, MDPI, vol. 5(8), pages 1-12, July.
    7. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    8. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    9. Keskin, Ali & Gürü, Metin & Altiparmak, Duran & Aydin, Kadir, 2008. "Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel," Renewable Energy, Elsevier, vol. 33(4), pages 553-557.
    10. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    11. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    12. Yi-Hung Chen & Ting-Cheng Tang & Tsung-Han Chiang & Bo-Yu Huang & Ching-Yuan Chang & Pen-Chi Chiang & Je-Lueng Shie & Matthias Franzreb & Lu-Yen Chen, 2012. "A Complementary Biodiesel Blend from Soapnut Oil and Free Fatty Acids," Energies, MDPI, vol. 5(8), pages 1-12, August.
    13. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    14. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    15. Xiaodan Wu & Rongsheng Ruan & Zhenyi Du & Yuhuan Liu, 2012. "Current Status and Prospects of Biodiesel Production from Microalgae," Energies, MDPI, vol. 5(8), pages 1-16, July.
    16. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    17. Mohammad I. Jahirul & Wenyong Koh & Richard J. Brown & Wijitha Senadeera & Ian O'Hara & Lalehvash Moghaddam, 2014. "Biodiesel Production from Non-Edible Beauty Leaf ( Calophyllum inophyllum ) Oil: Process Optimization Using Response Surface Methodology (RSM)," Energies, MDPI, vol. 7(8), pages 1-15, August.
    18. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    19. Xiangzheng Deng & Jianzhi Han & Fang Yin, 2012. "Net Energy, CO 2 Emission and Land-Based Cost-Benefit Analyses of Jatropha Biodiesel: A Case Study of the Panzhihua Region of Sichuan Province in China," Energies, MDPI, vol. 5(7), pages 1-15, June.
    20. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    21. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    22. Solomon Giwa & Luqman Chuah Abdullah & Nor Mariah Adam, 2010. "Investigating “Egusi” ( Citrullus Colocynthis L.) Seed Oil as Potential Biodiesel Feedstock," Energies, MDPI, vol. 3(4), pages 1-12, March.
    23. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanggi Jaung & Edi Wiraguna & Beni Okarda & Yustina Artati & Chun Sheng Goh & Ramdhoni Syahru & Budi Leksono & Lilik Budi Prasetyo & Soo Min Lee & Himlal Baral, 2018. "Spatial Assessment of Degraded Lands for Biofuel Production in Indonesia," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    2. Ng, Wei Zhe & Obon, Aaron Anthony & Lee, Chin Loong & Ong, Yi Hui & Gourich, Wail & Maran, Kireshwen & Tang, Dennis Boon Yong & Song, Cher Pin & Chan, Eng-Seng, 2022. "Techno-economic analysis of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil for improving renewable energy access in rural areas," Energy, Elsevier, vol. 243(C).
    3. Silitonga, A.S. & Mahlia, T.M.I. & Kusumo, F. & Dharma, S. & Sebayang, A.H. & Sembiring, R.W. & Shamsuddin, A.H., 2019. "Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation," Renewable Energy, Elsevier, vol. 133(C), pages 520-527.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    2. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    3. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    4. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    5. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    6. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    7. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    9. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    10. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    11. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    13. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    14. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    15. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    16. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    17. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    18. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    19. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    20. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:877-:d:103034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.