IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2845-d177226.html
   My bibliography  Save this article

Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)

Author

Listed:
  • Ahmad Abbaszadeh-Mayvan

    (Mechanic of Biosystems Engineering Department, Tarbiat Modares University, Tehran 14115-336, Iran)

  • Barat Ghobadian

    (Mechanic of Biosystems Engineering Department, Tarbiat Modares University, Tehran 14115-336, Iran)

  • Gholamhassan Najafi

    (Mechanic of Biosystems Engineering Department, Tarbiat Modares University, Tehran 14115-336, Iran)

  • Talal Yusaf

    (Office of the Pro Vice-Chancellor, Federation University, Ballarat, VIC 3350, Australia)

Abstract

This research aims to develop an optimal continuous process to produce fatty acid methyl esters (biodiesel) from waste cooking oil using a series of shockwave power reactors. Response surface methodology (RSM) based on central composite design (CCD) was used to design the experiment and to analyze five operating parameters: ratio of rotor diameter to stator diameter ( Dr/Ds ), ratio of cavity diameter to rotor diameter ( Dc/Dr ), ratio of cavity depth to gap between rotor and stator ( dc / ∆r ), rotational speed of rotor ( N ), and Residence time ( Tr ). The optimum conditions were determined to be Dr/Ds = 0.73, Dc/Dr = 0.06, dc/∆r = 0.50, 25,510.55 rpm rotational speed of rotor, and 30.10 s residence times under this condition. Regarding the results, the most important parameter in shockwave power reactor (SPR) reactors was ratio of rotor diameter to stator diameter ( Dr/Ds ). The optimum predicted and actual FAME yield was 98.53% and 96.62%, respectively, which demonstrates that RSM is a reliable method for modeling the current procedure.

Suggested Citation

  • Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2845-:d:177226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia-Chi Chang & Syuan Teng & Min-Hao Yuan & Dar-Ren Ji & Ching-Yuan Chang & Yi-Hung Chen & Je-Lueng Shie & Chungfang Ho & Sz-Ying Tian & Cesar Augusto Andrade-Tacca & Do Van Manh & Min-Yi Tsai & Mei-, 2018. "Esterification of Jatropha Oil with Isopropanol via Ultrasonic Irradiation," Energies, MDPI, vol. 11(6), pages 1-15, June.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    4. Andreas Vonortas & Nikolaos Papayannakos, 2014. "Comparative analysis of biodiesel versus green diesel," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 3-23, January.
    5. Angeles Cancela & Rocio Maceiras & Santiago Urrejola & Angel Sanchez, 2012. "Microwave-Assisted Transesterification of Macroalgae," Energies, MDPI, vol. 5(4), pages 1-10, March.
    6. Pal, Amit & Verma, Ashish & Kachhwaha, S.S. & Maji, S., 2010. "Biodiesel production through hydrodynamic cavitation and performance testing," Renewable Energy, Elsevier, vol. 35(3), pages 619-624.
    7. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    8. Choedkiatsakul, I. & Ngaosuwan, K. & Assabumrungrat, S. & Mantegna, S. & Cravotto, G., 2015. "Biodiesel production in a novel continuous flow microwave reactor," Renewable Energy, Elsevier, vol. 83(C), pages 25-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming-Chien Hsiao & Li-Wen Chang & Shuhn-Shyurng Hou, 2019. "Study of Solid Calcium Diglyceroxide for Biodiesel Production from Waste Cooking Oil Using a High Speed Homogenizer," Energies, MDPI, vol. 12(17), pages 1-11, August.
    2. Sun, Xun & Liu, Shuai & Manickam, Sivakumar & Tao, Yang & Yoon, Joon Yong & Xuan, Xiaoxu, 2023. "Intensification of biodiesel production by hydrodynamic cavitation: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos S. Osorio-González & Natali Gómez-Falcon & Fabiola Sandoval-Salas & Rahul Saini & Satinder K. Brar & Antonio Avalos Ramírez, 2020. "Production of Biodiesel from Castor Oil: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    2. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    3. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    4. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    5. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    6. Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
    7. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    8. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    9. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    11. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    12. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    13. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    14. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    15. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    16. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    17. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    18. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    19. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    20. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2845-:d:177226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.