Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.04.061
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Im-orb, Karittha & Wiyaratn, Wisitsree & Arpornwichanop, Amornchai, 2018. "Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion," Energy, Elsevier, vol. 153(C), pages 592-603.
- Barnwal, B.K. & Sharma, M.P., 2005. "Prospects of biodiesel production from vegetable oils in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 363-378, August.
- Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
- Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
- Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
- Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
- Lam, Su Shiung & Wan Mahari, Wan Adibah & Cheng, Chin Kui & Omar, Rozita & Chong, Cheng Tung & Chase, Howard A., 2016. "Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon," Energy, Elsevier, vol. 115(P1), pages 791-799.
- Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
- Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & Yousefi, Parisa & Mohammadi, Javad & Brask, Jesper, 2016. "Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents," Renewable Energy, Elsevier, vol. 91(C), pages 196-206.
- Ali, Chaudhry Haider & Qureshi, Abdul Sattar & Mbadinga, Serge Maurice & Liu, Jin-Feng & Yang, Shi-Zhong & Mu, Bo-Zhong, 2017. "Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach," Renewable Energy, Elsevier, vol. 109(C), pages 93-100.
- Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
- Mehrasbi, Mohammad Reza & Mohammadi, Javad & Peyda, Mazyar & Mohammadi, Mehdi, 2017. "Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil," Renewable Energy, Elsevier, vol. 101(C), pages 593-602.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kamel Ariffin, Maryam Farhana & Idris, Ani, 2022. "Fe2O3/Chitosan coated superparamagnetic nanoparticles supporting lipase enzyme from Candida Antarctica for microwave assisted biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 1362-1375.
- Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
- Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
- Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
- Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
- Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
- Santhoshkumar, A. & Ramanathan, Anand, 2020. "Recycling of waste engine oil through pyrolysis process for the production of diesel like fuel and its uses in diesel engine," Energy, Elsevier, vol. 197(C).
- Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
- Lee, Jechan & Yang, Xiao & Song, Hocheol & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Effects of carbon dioxide on pyrolysis of peat," Energy, Elsevier, vol. 120(C), pages 929-936.
- Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
- Xu, Lujiang & Chen, Shijia & Song, He & Liu, Yang & Shi, Chenchen & Lu, Qiang, 2020. "Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process," Energy, Elsevier, vol. 190(C).
- Le-Phuc, Nguyen & Tran, Tri V. & Phan, Thien T. & Ngo, Phuong T. & Ha, Quan L.M. & Luong, Thuy N. & Tran, Thinh H. & Phan, Tuan T., 2021. "High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils," Renewable Energy, Elsevier, vol. 168(C), pages 57-63.
- Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
- Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
- Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
- Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
- Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
- Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
- Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
- Ge, Shengbo & Foong, Shin Ying & Ma, Nyuk Ling & Liew, Rock Keey & Wan Mahari, Wan Adibah & Xia, Changlei & Yek, Peter Nai Yuh & Peng, Wanxi & Nam, Wai Lun & Lim, Xin Yi & Liew, Chin Mei & Chong, Chi , 2020. "Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Wan Mahari, Wan Adibah & Kee, Seng Hon & Foong, Shin Ying & Amelia, Tan Suet May & Bhubalan, Kesaven & Man, Mustafa & Yang, YaFeng & Ong, Hwai Chyuan & Vithanage, Meththika & Lam, Su Shiung & Sonne, C, 2022. "Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
- Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
More about this item
Keywords
mCLEAs; Lipase; Biodiesel; Waste cooking oil; Renewable fuel;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:874-882. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.