IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp56-64.html
   My bibliography  Save this article

Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS

Author

Listed:
  • Naderloo, Leila
  • Javadikia, Hossein
  • Mostafaei, Mostafa

Abstract

To analyze issues relating to sustainability, the energy consumed for producing one kilogram of a product was utilized to compare systems. Moreover, the energy indices of biodiesel production using the ultrasound-assisted transesterification reactions might be affected by the reactor dimensions and the ultrasonic power. The present study aimed to model the energy productivity and ratio in producing biodiesel from the waste cooking oil through ANFIS model. The properties of the produced biodiesel demonstrated that it possessed a desirable quality. The total energy inputs and outputs measured 36.652 and 45.007MJL−1, respectively. In addition, the mean scores of the energy ratio and productivity were 1.283 and 0.024 MJ/kg, respectively. The inputs of the ANFIS model comprised the diameter of the reactor and the height and the percentage of the ultrasonic power. The results indicated that there was an initial rise in the ratio of the energy with the increase of the height and the diameter of the reactor as well as the ultrasonic power, followed by a drop. Further, the results of employing the ANFIS model demonstrated that MSE and R2 values measured 5.54e−6 and 0.87 for the energy ratio and 2.94e−7 and 0.80 for the energy productivity, respectively. However, the adjusted R2 of the linear regression model without intercept measured 0.773 and 0.774 for the energy ratio and productivity, respectively. Accordingly, the ANFIS model could predict the energy ratio and productivity more precisely than the linear regression model.

Suggested Citation

  • Naderloo, Leila & Javadikia, Hossein & Mostafaei, Mostafa, 2017. "Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 56-64.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:56-64
    DOI: 10.1016/j.rser.2016.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Tomic, Milan & Savin, Lazar & Micic, Radoslav & Simikic, Mirko & Furman, Timofej, 2014. "Possibility of using biodiesel from sunflower oil as an additive for the improvement of lubrication properties of low-sulfur diesel fuel," Energy, Elsevier, vol. 65(C), pages 101-108.
    3. Papong, Seksan & Chom-In, Tassaneewan & Noksa-nga, Soottiwan & Malakul, Pomthong, 2010. "Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand," Energy Policy, Elsevier, vol. 38(1), pages 226-233, January.
    4. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    5. Spinelli, D. & Jez, S. & Pogni, R. & Basosi, R., 2013. "Environmental and life cycle analysis of a biodiesel production line from sunflower in the Province of Siena (Italy)," Energy Policy, Elsevier, vol. 59(C), pages 492-506.
    6. Uzun, Başak Burcu & Kılıç, Murat & Özbay, Nurgül & Pütün, Ayşe E. & Pütün, Ersan, 2012. "Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties," Energy, Elsevier, vol. 44(1), pages 347-351.
    7. Shapouri, Hosein & Duffield, James A. & Graboski, Michael S., 1995. "Estimating the Net Energy Balance of Corn Ethanol," Agricultural Economic Reports 34005, United States Department of Agriculture, Economic Research Service.
    8. Hanh, Hoang Duc & Dong, Nguyen The & Okitsu, Kenji & Nishimura, Rokuro & Maeda, Yasuaki, 2009. "Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition," Renewable Energy, Elsevier, vol. 34(3), pages 780-783.
    9. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    10. Adam J. Liska & Haishun S. Yang & Virgil R. Bremer & Terry J. Klopfenstein & Daniel T. Walters & Galen E. Erickson & Kenneth G. Cassman, 2009. "Improvements in Life Cycle Energy Efficiency and Greenhouse Gas Emissions of Corn‐Ethanol," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 58-74, February.
    11. Nguyen, Thu Lan Thi & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand," Energy Policy, Elsevier, vol. 35(9), pages 4585-4596, September.
    12. Nasir, N.F. & Daud, W.R.W. & Kamarudin, S.K. & Yaakob, Z., 2013. "Process system engineering in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 631-639.
    13. Chen, Kang-Shin & Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Wang, Hsin-Kai, 2012. "Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system," Energy, Elsevier, vol. 38(1), pages 151-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John, Monnie & Abdullah, Mohammad Omar & Hua, Tan Yie & Nolasco-Hipólito, Cirilo, 2021. "Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts," Renewable Energy, Elsevier, vol. 168(C), pages 815-828.
    2. Aghel, Babak & Mohadesi, Majid & Ansari, Ahmadreza & Maleki, Mahmoud, 2019. "Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 142(C), pages 207-214.
    3. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
    5. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    6. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    7. Omid Ghorbanzadeh & Hashem Rostamzadeh & Thomas Blaschke & Khalil Gholaminia & Jagannath Aryal, 2018. "A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 497-517, November.
    8. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    9. Sara Almasi & Barat Ghobadian & Gholam Hassan Najafi & Talal Yusaf & Masoud Dehghani Soufi & Seyed Salar Hoseini, 2019. "Optimization of an Ultrasonic-Assisted Biodiesel Production Process from One Genotype of Rapeseed (TERI (OE) R-983) as a Novel Feedstock Using Response Surface Methodology," Energies, MDPI, vol. 12(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sina Faizollahzadeh Ardabili & Bahman Najafi & Meysam Alizamir & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters," Energies, MDPI, vol. 11(11), pages 1-19, October.
    2. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    3. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    6. Pradhan, Anup & Mbohwa, Charles, 2014. "Development of biofuels in South Africa: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1089-1100.
    7. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    8. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    9. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    10. Li, Yangyang & Jin, Yiying & Li, Jinhui, 2016. "Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment," Energy, Elsevier, vol. 98(C), pages 155-167.
    11. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    12. Chanthon, Narita & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Appamana, Weerinda & Quitain, Armando T. & Assabumrungrat, Suttichai, 2021. "High-efficiency biodiesel production using rotating tube reactor: New insight of operating parameters on hydrodynamic regime and biodiesel yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Kanjaikaew, Utaiwan & Tongurai, Chakrit & Chongkhong, Sininart & Prasertsit, Kulchanat, 2018. "Two-step esterification of palm fatty acid distillate in ethyl ester production: Optimization and sensitivity analysis," Renewable Energy, Elsevier, vol. 119(C), pages 336-344.
    14. Behçet, Rasim & Yumrutaş, Recep & Oktay, Hasan, 2014. "Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine," Energy, Elsevier, vol. 71(C), pages 645-655.
    15. Thanh Xuan NguyenThi & Jean-Patrick Bazile & David Bessières, 2018. "Density Measurements of Waste Cooking Oil Biodiesel and Diesel Blends Over Extended Pressure and Temperature Ranges," Energies, MDPI, vol. 11(5), pages 1-14, May.
    16. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    17. Li, Yangyang & Jin, Yiying & Li, Jinhui, 2016. "Influence of thermal hydrolysis on composition characteristics of fatty acids in kitchen waste," Energy, Elsevier, vol. 102(C), pages 139-147.
    18. Pirmoradi, Neda & Ghaneian, Mohammad Taghi & Ehrampoush, Mohammad Hassan & Salmani, Mohammad Hossein & Hatami, Behnam, 2021. "The conversion of poultry slaughterhouse wastewater sludge into biodiesel: Process modeling and optimization," Renewable Energy, Elsevier, vol. 178(C), pages 1236-1249.
    19. Motasemi, F. & Ani, F.N., 2012. "A review on microwave-assisted production of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4719-4733.
    20. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:56-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.