My bibliography
Save this item
Factor modeling for high-dimensional time series: inference for the number of factors
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
- Jian Zhang & Jie Li, 2022. "Factorized estimation of high‐dimensional nonparametric covariance models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 542-567, June.
- Matteo Barigozzi & Lorenzo Trapani, 2018.
"Determining the dimension of factor structures in non-stationary large datasets,"
Discussion Papers
18/01, University of Nottingham, Granger Centre for Time Series Econometrics.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Papers 1806.03647, arXiv.org.
- Yongxia Zhang & Qi Wang & Maozai Tian, 2022. "Smoothed Quantile Regression with Factor-Augmented Regularized Variable Selection for High Correlated Data," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
- Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
- Wu, Jianhong, 2019. "Detecting irrelevant variables in possible proxies for the latent factors in macroeconomics and finance," Economics Letters, Elsevier, vol. 176(C), pages 60-63.
- Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024.
"Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
- Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2023. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Papers 2303.13218, arXiv.org.
- Li, Zeng & Pan, Guangming & Yao, Jianfeng, 2015. "On singular value distribution of large-dimensional autocovariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 119-140.
- Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
- Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
- Camacho, Maximo, 2020. "What do international energy prices have in common after taking into account the key drivers?," DES - Working Papers. Statistics and Econometrics. WS 31647, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fan, Xinyan & Fang, Kuangnan & Pu, Dan & Qin, Ruixuan, 2024. "Generalized latent space model for one-mode networks with awareness of two-mode networks," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
- Reisen, Valdério Anselmo & Sgrancio, Adriano Marcio & Lévy-Leduc, Céline & Bondon, Pascal & Monte, Edson Zambon & Aranda Cotta, Higor Henrique & Ziegelmann, Flávio Augusto, 2019. "Robust factor modelling for high-dimensional time series: An application to air pollution data," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 842-852.
- Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
- Daniel Peña & Victor J. Yohai, 2016. "Generalized Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1121-1131, July.
- Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
- Edson Zambon Monte & Felipe Fantin Almeida, 2020. "Interrelationships Between The Stock Returns Of Brazilian Companies That Make Up The Sãƒo Paulo Stock Exchange Index," Revista de Economia Mackenzie (REM), Mackenzie Presbyterian University, Social and Applied Sciences Center, vol. 17(1), pages 115-145, January-J.
- Zhang, Lyuou & Zhou, Wen & Wang, Haonan, 2021. "A semiparametric latent factor model for large scale temporal data with heteroscedasticity," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Ma, Shujie & Su, Liangjun & Zhang, Yichong, 2020.
"Detecting Latent Communities in Network Formation Models,"
Economics and Statistics Working Papers
12-2020, Singapore Management University, School of Economics.
- Shujie Ma & Liangjun Su & Yichong Zhang, 2020. "Detecting Latent Communities in Network Formation Models," Papers 2005.03226, arXiv.org, revised Mar 2021.
- Simon Beyeler & Sylvia Kaufmann, 2016.
"Factor augmented VAR revisited - A sparse dynamic factor model approach,"
Working Papers
16.08, Swiss National Bank, Study Center Gerzensee.
- Kaufmann, Sylvia & Beyeler, Simon, 2018. "Factor augmented VAR revisited - A sparse dynamic factor model approach," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181602, Verein für Socialpolitik / German Economic Association.
- Simon Beyeler & Sylvia Kaufmann, 2019. "Factor augmented VAR revisited - A sparse dynamic factor model approach," Working Papers 16.08R, Swiss National Bank, Study Center Gerzensee.
- Sung Hoon Choi, 2021. "Feasible Weighted Projected Principal Component Analysis for Factor Models with an Application to Bond Risk Premia," Papers 2108.10250, arXiv.org, revised May 2022.
- Asma Teimouri & Mahbanoo Tata & Mohsen Rezapour & Rafal Kulik & Narayanaswamy Balakrishnan, 2021. "Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1353-1375, December.
- Chen, Jia & Li, Degui & Linton, Oliver, 2019.
"A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Chen, J. & Li, D. & Linton, O., 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Cambridge Working Papers in Economics 1876, Faculty of Economics, University of Cambridge.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
- Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
- Gianluca Cubadda & Alain Hecq, 2022.
"Dimension Reduction for High‐Dimensional Vector Autoregressive Models,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
- Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
- Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
- Mingxiang Cao & Yuanjing He, 2022. "A high-dimensional test on linear hypothesis of means under a low-dimensional factor model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 557-572, July.
- Jiti Gao & Guangming Pan & Yanrong Yang & Bo Zhang, 2019. "Estimation of Cross-Sectional Dependence in Large Panels," Papers 1904.06843, arXiv.org.
- Shuquan Yang & Nengxiang Ling & Yulin Gong, 2022. "Robust estimation of the number of factors for the pair-elliptical factor models," Computational Statistics, Springer, vol. 37(3), pages 1495-1522, July.
- Xiao Huang, 2023. "Composite Quantile Factor Model," Papers 2308.02450, arXiv.org, revised Nov 2024.
- Bai, Jushan & Liao, Yuan, 2012. "Efficient Estimation of Approximate Factor Models," MPRA Paper 41558, University Library of Munich, Germany.
- Joakim Westerlund, 2020. "A cross‐section average‐based principal components approach for fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 776-785, September.
- Elynn Y. Chen & Rong Chen, 2019. "Modeling Dynamic Transport Network with Matrix Factor Models: with an Application to International Trade Flow," Papers 1901.00769, arXiv.org.
- Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
- Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
- He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
- Li, Yan & Gao, Zhigen & Huang, Wei & Guo, Jianhua, 2023. "Matrix-variate data analysis by two-way factor model with replicated observations," Statistics & Probability Letters, Elsevier, vol. 202(C).
- Tobias Hartl & Roland Weigand, 2018.
"Multivariate Fractional Components Analysis,"
Papers
1812.09149, arXiv.org, revised Jan 2019.
- Hartl, Tobias & Weigand, Roland, 2019. "Multivariate Fractional Components Analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 38283, University of Regensburg, Department of Economics.
- Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023.
"Binary response models for heterogeneous panel data with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
- Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Papers 2012.03182, arXiv.org, revised Nov 2021.
- Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
- Jiayuan Zhou & Feiyu Jiang & Ke Zhu & Wai Keung Li, 2019. "Time series models for realized covariance matrices based on the matrix-F distribution," Papers 1903.12077, arXiv.org, revised Jul 2020.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Chenlei Leng & Degui Li & Hanlin Shang & Yingcun Xia, 2024. "Covariance Function Estimation for High-Dimensional Functional Time Series with Dual Factor Structures," Papers 2401.05784, arXiv.org, revised Jan 2024.
- Gao, Zhaoxing & Ma, Yingying & Wang, Hansheng & Yao, Qiwei, 2019. "Banded spatio-temporal autoregressions," Journal of Econometrics, Elsevier, vol. 208(1), pages 211-230.
- Tu, Yundong & Yao, Qiwei & Zhang, Rongmao, 2020. "Error-correction factor models for high-dimensional cointegrated time series," LSE Research Online Documents on Economics 106994, London School of Economics and Political Science, LSE Library.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Minseog Oh & Donggyu Kim, 2024. "Property of Inverse Covariance Matrix-based Financial Adjacency Matrix for Detecting Local Groups," Papers 2412.05664, arXiv.org.
- Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019.
"On the robustness of the principal volatility components,"
Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
- Trucíos Maza, Carlos César & Hotta, Luiz Koodi & Pereira, Pedro L. Valls, 2018. "On the robustness of the principal volatility components," Textos para discussão 474, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021.
"Augmented factor models with applications to validating market risk factors and forecasting bond risk premia,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
- Jianqing Fan & Yuan Ke & Yuan Liao, 2016. "Augmented Factor Models with Applications to Validating Market Risk Factors and Forecasting Bond Risk Premia," Papers 1603.07041, arXiv.org, revised Sep 2018.
- Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
- Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
- Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
- Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
- Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation and Inference for a Class of Generalized Hierarchical Models," Papers 2311.02789, arXiv.org, revised Apr 2024.
- Reiß, Markus & Winkelmann, Lars, 2021. "Inference on the maximal rank of time-varying covariance matrices using high-frequency data," Discussion Papers 2021/14, Free University Berlin, School of Business & Economics.
- Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
- Wu, Jianhong, 2016. "Robust determination for the number of common factors in the approximate factor models," Economics Letters, Elsevier, vol. 144(C), pages 102-106.
- Barigozzi, Matteo & Trapani, Lorenzo, 2020.
"Sequential testing for structural stability in approximate factor models,"
Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
- Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org, revised Mar 2020.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Sequential testing for structural stability in approximate factor models," Discussion Papers 18/04, University of Nottingham, Granger Centre for Time Series Econometrics.
- Wilms, Ines & Croux, Christophe, 2016. "Forecasting using sparse cointegration," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1256-1267.
- Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
- Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
- Hallin, Marc & Lippi, Marco, 2013.
"Factor models in high-dimensional time series—A time-domain approach,"
Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
- Marc Hallin & Marco Lippi, 2013. "Factor Models in High-Dimensional Time Series: A Time-Domain Approach," Working Papers ECARES ECARES 2013-15, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Working Papers ECARES
2023-15, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
- Li, Hong & Porth, Lysa & Tan, Ken Seng & Zhu, Wenjun, 2021. "Improved index insurance design and yield estimation using a dynamic factor forecasting approach," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 208-221.
- Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Matteo Barigozzi & Marc Hallin, 2017.
"A network analysis of the volatility of high dimensional financial series,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
- Barigozzi, Matteo & Hallin, Marc, 2017. "A network analysis of the volatility of high-dimensionalfinancial series," LSE Research Online Documents on Economics 67456, London School of Economics and Political Science, LSE Library.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Jaeheon Jung, 2019. "Estimating a Large Covariance Matrix in Time-varying Factor Models," Papers 1910.11965, arXiv.org.
- Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021.
"Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- repec:cte:wsrepe:27047 is not listed on IDEAS
- Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
- Gianluca Cubadda & Alain Hecq, 2020.
"Dimension Reduction for High Dimensional Vector Autoregressive Models,"
Papers
2009.03361, arXiv.org, revised Feb 2022.
- Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
- Matteo Barigozzi & Marc Hallin, 2015.
"Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series,"
Papers
1510.05118, arXiv.org, revised Jul 2016.
- Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
- Choi, Sung Hoon & Kim, Donggyu, 2023.
"Large volatility matrix analysis using global and national factor models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
- Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
- Shujie Ma & Oliver Linton & Jiti Gao, 2017.
"Estimation and inference in semiparametric quantile factor models,"
Monash Econometrics and Business Statistics Working Papers
8/17, Monash University, Department of Econometrics and Business Statistics.
- Ma, S. & Linton, O. & Gao, J., 2019. "Estimation and Inference in Semiparametric Quantile Factor Models," Cambridge Working Papers in Economics 1939, Faculty of Economics, University of Cambridge.
- Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
- Guangbao Guo & Chunjie Wei & Guoqi Qian, 2023. "Sparse online principal component analysis for parameter estimation in factor model," Computational Statistics, Springer, vol. 38(2), pages 1095-1116, June.
- Yu, Long & He, Yong & Zhang, Xinsheng, 2019. "Robust factor number specification for large-dimensional elliptical factor model," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
- Zhou, Ruichao & Wu, Jianhong, 2023. "Determining the number of change-points in high-dimensional factor models by cross-validation with matrix completion," Economics Letters, Elsevier, vol. 232(C).
- Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
- Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
- Fayed Alshammri & Jiazhu Pan, 2021. "Moving dynamic principal component analysis for non-stationary multivariate time series," Computational Statistics, Springer, vol. 36(3), pages 2247-2287, September.
- Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
- Andrés García-Medina & Graciela González Farías, 2020. "Transfer entropy as a variable selection methodology of cryptocurrencies in the framework of a high dimensional predictive model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-31, January.
- Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
- Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
- Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
- Nan‐Jung Hsu & Lai Heng Sim & Ruey S. Tsay, 2023. "Testing for symmetric correlation matrices with applications to factor models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 622-643, September.
- Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
- Alonso, Andrés M. & Galeano, Pedro & Peña, Daniel, 2020. "A robust procedure to build dynamic factor models with cluster structure," Journal of Econometrics, Elsevier, vol. 216(1), pages 35-52.
- Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021.
"Estimation and inference in semiparametric quantile factor models,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
- Shujie Ma & Oliver Linton & Jiti Gao, 2017. "Estimation and inference in semiparametric quantile factor models," Monash Econometrics and Business Statistics Working Papers 8/17, Monash University, Department of Econometrics and Business Statistics.
- Ma, S. & Linton, O. & Gao, J., 2019. "Estimation and Inference in Semiparametric Quantile Factor Models," Cambridge Working Papers in Economics 1933, Faculty of Economics, University of Cambridge.
- Valdério Anselmo Reisen & Céline Lévy-Leduc & Edson Zambon Monte & Pascal Bondon, 2024. "A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method," Statistical Papers, Springer, vol. 65(5), pages 2865-2886, July.
- Aboura, Sofiane & Chevallier, Julien, 2015.
"Geographical diversification with a World Volatility Index,"
Journal of Multinational Financial Management, Elsevier, vol. 30(C), pages 62-82.
- Julien Chevallier & Sofiane Aboura, 2015. "Geographical Diversification with a World Volatility Index," Post-Print hal-01529755, HAL.
- Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
- Junlong Zhao & Xiumin Liu & Hansheng Wang & Chenlei Leng, 2022. "Dimension reduction for covariates in network data [On semidefinite relaxations for the block model]," Biometrika, Biometrika Trust, vol. 109(1), pages 85-102.
- Li, Yuanbo & Ng, Chi Tim & Yau, Chun Yip, 2022. "GARCH-type factor model," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
- Francisco Corona & Pedro Orraca, 2019.
"Remittances in Mexico and their unobserved components,"
The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(8), pages 1047-1066, November.
- Corona, Francisco & Orraca, Pedro, 2016. "Remittances in Mexico and their unobserved components," DES - Working Papers. Statistics and Econometrics. WS 22674, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
- Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
- Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
- He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
- Jiti Gao & Guangming Pan & Yanrong Yang, 2016. "CEstimation of Structural Breaks in Large Panels with Cross-Sectional Dependence," Monash Econometrics and Business Statistics Working Papers 12/16, Monash University, Department of Econometrics and Business Statistics.
- Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
- Feng, Guohua & Gao, Jiti & Peng, Bin, 2022.
"An integrated panel data approach to modelling economic growth,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
- Guohua Feng & Jiti Gao & Bin Peng, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Papers 1903.07948, arXiv.org.
- Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Ngai Hang Chan & Ye Lu & Chun Yip Yau, 2017. "Factor Modelling for High-Dimensional Time Series: Inference and Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 285-307, March.
- Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
- Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
- Bo Zhang & Jiti Gao & Guangming Pan & Yanrong Yang, 2023. "Eigen-Analysis for High-Dimensional Time Series Clustering," Monash Econometrics and Business Statistics Working Papers 22/23, Monash University, Department of Econometrics and Business Statistics.
- Liu, Xialu & Chen, Rong, 2020. "Threshold factor models for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 53-70.
- Jia Chen & Degui Li & Yingcun Xia, 2015. "New Semiparametric Estimation Procedure for Functional Coefficient Longitudinal Data Models," Discussion Papers 15/17, Department of Economics, University of York.
- Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
- Passemier, Damien & Yao, Jianfeng, 2014. "Estimation of the number of spikes, possibly equal, in the high-dimensional case," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 173-183.
- Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
- Chen, Jia & Li, Degui & Xia, Yingcun, 2019. "Estimation of a rank-reduced functional-coefficient panel data model with serial correlation," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 456-479.
- Düker, Marie-Christine & Pipiras, Vladas & Sundararajan, Raanju, 2022. "Cotrending: Testing for common deterministic trends in varying means model," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Sundararajan, Raanju R., 2021. "Principal component analysis using frequency components of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- Rostyslav Bodnar & Taras Bodnar & Wolfgang Schmid, 2023. "Sequential monitoring of high‐dimensional time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 962-992, September.
- Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
- Hong‐Fan Zhang, 2024. "Additive autoregressive models for matrix valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(3), pages 398-420, May.
- Lee, Chung Eun & Zhang, Xin, 2024. "Conditional mean dimension reduction for tensor time series," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
- Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
- Martínez, Wilmer & Nieto, Fabio H. & Poncela, Pilar, 2016. "Choosing a dynamic common factor as a coincident index," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 89-98.
- Chang, Jinyuan & Yao, Qiwei & Zhou, Wen, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," LSE Research Online Documents on Economics 68531, London School of Economics and Political Science, LSE Library.
- Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.
- Zeda Li & William W. S. Wei, 2024. "Measuring the advantages of contemporaneous aggregation in forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1308-1320, August.
- Li, Shuangbo & Zhang, Li-Xin, 2019. "Identifying the number of factors using a white noise test," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 92-99.
- Wang, Di & Zheng, Yao & Li, Guodong, 2024. "High-dimensional low-rank tensor autoregressive time series modeling," Journal of Econometrics, Elsevier, vol. 238(1).
- Shaokang Wang & Han Lin Shang & Leonie Tickle & Han Li, 2024. "Forecasting Age- and Sex-Specific Survival Functions: Application to Annuity Pricing," Risks, MDPI, vol. 12(7), pages 1-15, July.
- Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation of Semiparametric Multi-Index Models Using Deep Neural Networks," Monash Econometrics and Business Statistics Working Papers 21/23, Monash University, Department of Econometrics and Business Statistics.
- Marc Hallin & Gilles Nisol & Shahin Tavakoli, 2023. "Factor models for high‐dimensional functional time series I: Representation results," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 578-600, September.
- Jiti Gao & Guangming Pan & Yanrong Yang & Bo Zhang, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Monash Econometrics and Business Statistics Working Papers 9/19, Monash University, Department of Econometrics and Business Statistics.
- He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
- Chen Tang & Yanlin Shi, 2021. "Forecasting High-Dimensional Financial Functional Time Series: An Application to Constituent Stocks in Dow Jones Index," JRFM, MDPI, vol. 14(8), pages 1-13, July.
- Camacho, Maximo & Caro, Angela & Peña, Daniel, 2023. "What drives industrial energy prices?," Economic Modelling, Elsevier, vol. 120(C).