IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.03226.html
   My bibliography  Save this paper

Detecting Latent Communities in Network Formation Models

Author

Listed:
  • Shujie Ma
  • Liangjun Su
  • Yichong Zhang

Abstract

This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets.

Suggested Citation

  • Shujie Ma & Liangjun Su & Yichong Zhang, 2020. "Detecting Latent Communities in Network Formation Models," Papers 2005.03226, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2005.03226
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.03226
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    2. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    3. Angelo Mele, 2017. "A Structural Model of Dense Network Formation," Econometrica, Econometric Society, vol. 85, pages 825-850, May.
    4. Traud, Amanda L. & Mucha, Peter J. & Porter, Mason A., 2012. "Social structure of Facebook networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4165-4180.
    5. Hossein Alidaee & Eric Auerbach & Michael P. Leung, 2020. "Recovering Network Structure from Aggregated Relational Data using Penalized Regression," Papers 2001.06052, arXiv.org.
    6. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    7. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
    8. N. Binkiewicz & J. T. Vogelstein & K. Rohe, 2017. "Covariate-assisted spectral clustering," Biometrika, Biometrika Trust, vol. 104(2), pages 361-377.
    9. Bryan S. Graham, 2017. "An Econometric Model of Network Formation With Degree Heterogeneity," Econometrica, Econometric Society, vol. 85, pages 1033-1063, July.
    10. Koen Jochmans, 2023. "Modified-likelihood estimation of fixed-effect models for dyadic data," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 14(3), pages 417-433, December.
    11. Leung, Michael P., 2015. "Two-step estimation of network-formation models with incomplete information," Journal of Econometrics, Elsevier, vol. 188(1), pages 182-195.
    12. Belloni, Alexandre & Chen, Mingli & Madrid Padilla, Oscar Hernan & Wang, Zixuan (Kevin), 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," The Warwick Economics Research Paper Series (TWERPS) 1230, University of Warwick, Department of Economics.
    13. Ting Yan & Binyan Jiang & Stephen E. Fienberg & Chenlei Leng, 2019. "Statistical Inference in a Directed Network Model With Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 857-868, April.
    14. Ting Yan & Jinfeng Xu, 2013. "A central limit theorem in the β-model for undirected random graphs with a diverging number of vertices," Biometrika, Biometrika Trust, vol. 100(2), pages 519-524.
    15. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    16. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Wyrwich, Michael & Steinberg, Philip J. & Noseleit, Florian & de Faria, Pedro, 2022. "Is open innovation imprinted on new ventures? The cooperation-inhibiting legacy of authoritarian regimes," Research Policy, Elsevier, vol. 51(1).
    3. Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023. "High-dimensional VARs with common factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
    4. Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
    5. Churchill, Brandyn F., 2021. "How important is the structure of school vaccine requirement opt-out provisions? Evidence from Washington, DC's HPV vaccine requirement," Journal of Health Economics, Elsevier, vol. 78(C).
    6. Lu, Xun & Su, Liangjun, 2023. "Uniform inference in linear panel data models with two-dimensional heterogeneity," Journal of Econometrics, Elsevier, vol. 235(2), pages 694-719.
    7. Candelaria, Luis E. & Ura, Takuya, 2023. "Identification and inference of network formation games with misclassified links," Journal of Econometrics, Elsevier, vol. 235(2), pages 862-891.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadao Hoshino, 2020. "A Pairwise Strategic Network Formation Model with Group Heterogeneity: With an Application to International Travel," Papers 2012.14886, arXiv.org, revised Feb 2021.
    2. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    3. Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
    4. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    5. Qiuping Wang & Yuan Zhang & Ting Yan, 2023. "Asymptotic theory in network models with covariates and a growing number of node parameters," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 369-392, April.
    6. Gao, Wayne Yuan & Li, Ming & Xu, Sheng, 2023. "Logical differencing in dyadic network formation models with nontransferable utilities," Journal of Econometrics, Elsevier, vol. 235(1), pages 302-324.
    7. Alonso, Andrés M. & Galeano, Pedro & Peña, Daniel, 2020. "A robust procedure to build dynamic factor models with cluster structure," Journal of Econometrics, Elsevier, vol. 216(1), pages 35-52.
    8. Junlong Zhao & Xiumin Liu & Hansheng Wang & Chenlei Leng, 2022. "Dimension reduction for covariates in network data [On semidefinite relaxations for the block model]," Biometrika, Biometrika Trust, vol. 109(1), pages 85-102.
    9. Luis E. Candelaria, 2020. "A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity," Papers 2007.05403, arXiv.org, revised Aug 2020.
    10. Candelaria, Luis E. & Ura, Takuya, 2023. "Identification and inference of network formation games with misclassified links," Journal of Econometrics, Elsevier, vol. 235(2), pages 862-891.
    11. Candelaria, Luis E., 2020. "A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity," The Warwick Economics Research Paper Series (TWERPS) 1279, University of Warwick, Department of Economics.
    12. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    13. Áureo de Paula, 2020. "Econometric Models of Network Formation," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 775-799, August.
    14. Tadao Hoshino & Daichi Shimamoto & Yasuyuki Todo, 2020. "Accounting for Heterogeneity in Network Formation Behaviour: An Application to Vietnamese SMEs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1042-1067, October.
    15. Alex Centeno, 2022. "A Structural Model for Detecting Communities in Networks," Papers 2209.08380, arXiv.org, revised Oct 2022.
    16. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    17. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    18. Mingli Chen & Kengo Kato & Chenlei Leng, 2021. "Analysis of networks via the sparse β‐model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 887-910, November.
    19. Juan Nelson Mart'inez Dahbura & Shota Komatsu & Takanori Nishida & Angelo Mele, 2021. "A Structural Model of Business Card Exchange Networks," Papers 2105.12704, arXiv.org, revised Aug 2021.
    20. Junhui Cai & Dan Yang & Wu Zhu & Haipeng Shen & Linda Zhao, 2021. "Network regression and supervised centrality estimation," Papers 2111.12921, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.03226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.