IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2024-7.html
   My bibliography  Save this paper

Estimation and Inference for a Class of Generalized Hierarchical Models

Author

Listed:
  • Chaohua Dong
  • Jiti Gao
  • Bin Peng
  • Yayi Yan

Abstract

In this paper, we consider estimation and inference for the unknown parameters and function involved in a class of generalized hierarchical models. Such models are of great interest in the literature of neural networks (such as Bauer and Kohler, 2019). We propose a rectified linear unit (ReLU) based deep neural network (DNN) approach, and contribute to the design of DNN by i) providing more transparency for practical implementation, ii) defining different types of sparsity, iii) showing the differentiability, iv) pointing out the set of effective parameters, and v) offering a new variant of rectified linear activation function (ReLU), etc. Asymptotic properties are established accordingly, and a feasible procedure for the purpose of inference is also proposed. We conduct extensive numerical studies to examine the finite-sample performance of the estimation methods, and we also evaluate the empirical relevance and applicability of the proposed models and estimation methods to real data.

Suggested Citation

  • Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2024. "Estimation and Inference for a Class of Generalized Hierarchical Models," Monash Econometrics and Business Statistics Working Papers 7/24, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2024-7
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/2023/wp07-2024.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Estimation Theory; Deep Neural Network; Hierarchical Model; ReLU;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2024-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.