IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v37y2021i4p1535-1555.html
   My bibliography  Save this article

Modeling high-dimensional unit-root time series

Author

Listed:
  • Gao, Zhaoxing
  • Tsay, Ruey S.

Abstract

This paper proposes a new procedure to build factor models for high-dimensional unit-root time series by postulating that a p-dimensional unit-root process is a nonsingular linear transformation of a set of unit-root processes, a set of stationary common factors that are dynamically dependent, and some idiosyncratic white noise components. For the stationary components, we assume that the factor process captures the temporal dependence, and that the idiosyncratic white noise series explains, jointly with the factors, the cross-sectional dependence. The estimation of nonsingular linear loading spaces is carried out in two steps. First, we use an eigenanalysis of a nonnegative definite matrix of the data to separate the unit-root processes from the stationary ones, and a modified method to specify the number of unit roots. We then employ another eigenanalysis and a projected principal component analysis to identify the stationary common factors and the white noise series. We propose a new procedure to specify the number of white noise series and, hence, the number of stationary common factors. We establish asymptotic properties of the proposed method for both fixed and diverging p as the sample size n increases, and use a simulation and a real example to demonstrate the performance of the proposed method in finite samples. We also compare our method with some commonly used ones in the literature regarding the forecast ability of the extracted factors, and find that the proposed method performs well in out-of-sample forecasting of a 508-dimensional PM2.5 series in Taiwan.

Suggested Citation

  • Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
  • Handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1535-1555
    DOI: 10.1016/j.ijforecast.2020.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207020301497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2020.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    5. Saikkonen, Pentti & Lütkepohl, Helmut, 2000. "Testing For The Cointegrating Rank Of A Var Process With An Intercept," Econometric Theory, Cambridge University Press, vol. 16(3), pages 373-406, June.
    6. Anindya Banerjee & Massimiliano Marcellino & Chiara Osbat, 2004. "Some cautions on the use of panel methods for integrated series of macroeconomic data," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 322-340, December.
    7. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    10. Gao, Zhaoxing & Ma, Yingying & Wang, Hansheng & Yao, Qiwei, 2019. "Banded spatio-temporal autoregressions," Journal of Econometrics, Elsevier, vol. 208(1), pages 211-230.
    11. Charles Engel & Nelson C. Mark & Kenneth D. West, 2015. "Factor Model Forecasts of Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 32-55, February.
    12. Jinyuan Chang & Qiwei Yao & Wen Zhou, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," Biometrika, Biometrika Trust, vol. 104(1), pages 111-127.
    13. Saikkonen, Pentti & Lutkepohl, Helmut, 2000. "Testing for the Cointegrating Rank of a VAR Process with Structural Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 451-464, October.
    14. Pan, Jiazhu & Yao, Qiwei, 2008. "Modelling multiple time series via common factors," LSE Research Online Documents on Economics 22876, London School of Economics and Political Science, LSE Library.
    15. Zhaoxing Gao & Ruey S. Tsay, 2019. "A Structural‐Factor Approach to Modeling High‐Dimensional Time Series and Space‐Time Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(3), pages 343-362, May.
    16. Chang, Jinyuan & Yao, Qiwei & Zhou, Wen, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," LSE Research Online Documents on Economics 68531, London School of Economics and Political Science, LSE Library.
    17. Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
    18. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    19. Jiazhu Pan & Qiwei Yao, 2008. "Modelling multiple time series via common factors," Biometrika, Biometrika Trust, vol. 95(2), pages 365-379.
    20. Lutkepohl, Helmut & Saikkonen, Pentti, 2000. "Testing for the cointegrating rank of a VAR process with a time trend," Journal of Econometrics, Elsevier, vol. 95(1), pages 177-198, March.
    21. Soren Johansen, 2002. "A Small Sample Correction for the Test of Cointegrating Rank in the Vector Autoregressive Model," Econometrica, Econometric Society, vol. 70(5), pages 1929-1961, September.
    22. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    23. Phillips, P. C. B. & Ouliaris, S., 1988. "Testing for cointegration using principal components methods," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 205-230.
    24. Tsay, Ruey S., 2020. "Testing serial correlations in high-dimensional time series via extreme value theory," Journal of Econometrics, Elsevier, vol. 216(1), pages 106-117.
    25. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    26. Song, Song & Bickel, Peter J., 2011. "Large vector auto regressions," SFB 649 Discussion Papers 2011-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    27. Aznar, Antonio & Salvador, Manuel, 2002. "Selecting The Rank Of The Cointegration Space And The Form Of The Intercept Using An Information Criterion," Econometric Theory, Cambridge University Press, vol. 18(4), pages 926-947, August.
    28. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    29. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    30. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    31. Rongmao Zhang & Peter Robinson & Qiwei Yao, 2019. "Identifying Cointegration by Eigenanalysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 916-927, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puyi Fang & Zhaoxing Gao & Ruey S. Tsay, 2023. "Determination of the effective cointegration rank in high-dimensional time-series predictive regressions," Papers 2304.12134, arXiv.org, revised Apr 2023.
    2. Fang, Puyi & Gao, Zhaoxing & Tsay, Ruey S., 2023. "Supervised kernel principal component analysis for forecasting," Finance Research Letters, Elsevier, vol. 58(PA).
    3. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    4. Escribano, Alvaro & Peña, Daniel & Ruiz, Esther, 2021. "30 years of cointegration and dynamic factor models forecasting and its future with big data: Editorial," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1333-1337.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    2. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    3. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    4. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    5. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    6. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    7. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    8. Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
    9. Francisco Corona & Pedro Orraca, 2019. "Remittances in Mexico and their unobserved components," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(8), pages 1047-1066, November.
    10. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    11. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    12. Fayed Alshammri & Jiazhu Pan, 2021. "Moving dynamic principal component analysis for non-stationary multivariate time series," Computational Statistics, Springer, vol. 36(3), pages 2247-2287, September.
    13. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    14. Kosei Fukuda, 2011. "Cointegration rank switching model: an application to forecasting interest rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(5), pages 509-522, August.
    15. Eiji Kurozumi & Yoichi Arai, 2007. "Efficient estimation and inference in cointegrating regressions with structural change," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 545-575, July.
    16. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.
    17. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    18. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    19. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
    20. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:37:y:2021:i:4:p:1535-1555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.