IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v96y2024ipas105752192400560x.html
   My bibliography  Save this article

Pragmatic attitude to large-scale Markowitz’s portfolio optimization and factor-augmented derating

Author

Listed:
  • Hui, Yongchang
  • Shi, Mengjie
  • Wong, Wing-Keung
  • Zheng, Shurong

Abstract

In this paper, we propose a Factor-Augmented Derating (FAD) method for large-scale mean–variance portfolio optimization to further overcome the overprediction phenomenon pointed by Bai et al., (2009). They found out the optimal return obtained by plug-in method was consistently higher than the theoretical optimal return and proposed a bootstrap de-rated optimal return instead based on random matrix theory. Incorporating the widely recognized fact in empirical finance studies that high-dimensional stock returns often conform to factor models, we replace the estimator of the precision matrix with a low-rank estimator in the plug-in optimal return, and further derate it using the correction parameter derived from Bai et al., (2009). We establish theories to verify why the FAD method can more effectively avoid overprediction. In our simulation, we find that derating is requisite and our FAD optimal return is the closest to the theoretical optimal return comparing to plug-in, bootstrap-derated and factor-based optimal returns in high-dimensional situations. We also find that the FAD optimal return is the most credible in our empirical studies on portfolio allocation among 200 component stocks of S&P500. Backtesting results clearly show that the discrepancy of “high expectation-low realization” can be best reduced by using the FAD method, though no real returns can achieve the anticipated optimal returns. More surprisingly, FAD method yields the highest real returns, even with low optimal returns at the decision-making stage.

Suggested Citation

  • Hui, Yongchang & Shi, Mengjie & Wong, Wing-Keung & Zheng, Shurong, 2024. "Pragmatic attitude to large-scale Markowitz’s portfolio optimization and factor-augmented derating," International Review of Financial Analysis, Elsevier, vol. 96(PA).
  • Handle: RePEc:eee:finana:v:96:y:2024:i:pa:s105752192400560x
    DOI: 10.1016/j.irfa.2024.103628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S105752192400560X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Chen, Binbin & Huang, Shih-Feng & Pan, Guangming, 2015. "High dimensional mean–variance optimization through factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 140-159.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
    7. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    8. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    9. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    10. Chi Tim Ng & Yue Shi & Ngai Hang Chan, 2020. "Markowitz Portfolio And The Blur Of History," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(05), pages 1-19, August.
    11. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    12. Liu, Weidong & Luo, Xi, 2015. "Fast and adaptive sparse precision matrix estimation in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 153-162.
    13. Markowitz, Harry M & Perold, Andre F, 1981. "Portfolio Analysis with Factors and Scenarios," Journal of Finance, American Finance Association, vol. 36(4), pages 871-877, September.
    14. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    15. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    16. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    17. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2016. "Direct shrinkage estimation of large dimensional precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 223-236.
    18. Roberto Ortiz & Mauricio Contreras & Cristhian Mellado, 2022. "Improving the volatility of the optimal weights of the Markowitz model," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 2836-2858, December.
    19. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.
    20. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    21. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    22. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    23. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    24. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    25. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    26. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    27. Jianqing Fan & Jianhua Guo & Shurong Zheng, 2022. "Estimating Number of Factors by Adjusted Eigenvalues Thresholding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 852-861, April.
    28. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    29. Apichat Chaweewanchon & Rujira Chaysiri, 2022. "Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning," IJFS, MDPI, vol. 10(3), pages 1-19, August.
    30. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    31. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    32. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    33. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    2. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    3. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    4. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    5. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    6. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    7. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    8. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.
    9. Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
    10. Chen, Binbin & Huang, Shih-Feng & Pan, Guangming, 2015. "High dimensional mean–variance optimization through factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 140-159.
    11. Qingliang Fan & Ruike Wu & Yanrong Yang, 2024. "Shocks-adaptive Robust Minimum Variance Portfolio for a Large Universe of Assets," Papers 2410.01826, arXiv.org.
    12. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
    13. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    14. Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
    15. Yu, Xiufan & Yao, Jiawei & Xue, Lingzhou, 2024. "Power enhancement for testing multi-factor asset pricing models via Fisher’s method," Journal of Econometrics, Elsevier, vol. 239(2).
    16. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
    17. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    18. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    19. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    20. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:96:y:2024:i:pa:s105752192400560x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.