IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc18/181602.html
   My bibliography  Save this paper

Factor augmented VAR revisited - A sparse dynamic factor model approach

Author

Listed:
  • Kaufmann, Sylvia
  • Beyeler, Simon

Abstract

We combine the factor augmented VAR framework with recently developed estimation and identification procedures for sparse dynamic factor models. Working with a sparse hierarchical prior distribution allows us to discriminate between zero and non-zero factor loadings. The non-zero loadings identify the unobserved factors and provide a meaningful economic interpretation for them. Applying our methodology to US macroeconomic data reveals indeed a high degree of sparsity in the data. We use the estimated FAVAR to study the effect of a monetary policy shock and a shock to the term premium. Factors and specific variables show sensible responses to the identified shocks.

Suggested Citation

  • Kaufmann, Sylvia & Beyeler, Simon, 2018. "Factor augmented VAR revisited - A sparse dynamic factor model approach," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181602, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc18:181602
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/181602/1/VfS-2018-pid-13831.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    2. Kaufmann, Sylvia & Schumacher, Christian, 2012. "Finding relevant variables in sparse Bayesian factor models: Economic applications and simulation results," Discussion Papers 29/2012, Deutsche Bundesbank.
    3. Bai, Jushan & Wang, Peng, 2014. "Identification theory for high dimensional static and dynamic factor models," Journal of Econometrics, Elsevier, vol. 178(2), pages 794-804.
    4. repec:bfi:wpaper:2014-014 is not listed on IDEAS
    5. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    6. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    7. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    8. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    9. Andr? Kurmann & Christopher Otrok, 2013. "News Shocks and the Slope of the Term Structure of Interest Rates," American Economic Review, American Economic Association, vol. 103(6), pages 2612-2632, October.
    10. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    11. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    12. Joshua Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Invariant Inference and Efficient Computation in the Static Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 819-828, April.
    13. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    14. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    15. Boivin, Jean & Kiley, Michael T. & Mishkin, Frederic S., 2010. "How Has the Monetary Transmission Mechanism Evolved Over Time?," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 8, pages 369-422, Elsevier.
    16. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    17. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    18. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2016. "Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem," Journal of Econometrics, Elsevier, vol. 192(1), pages 190-206.
    19. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    20. Sims, Christopher A., 1992. "Interpreting the macroeconomic time series facts : The effects of monetary policy," European Economic Review, Elsevier, vol. 36(5), pages 975-1000, June.
    21. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    22. Giordani, Paolo, 2004. "An alternative explanation of the price puzzle," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1271-1296, September.
    23. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2013. "Pricing the term structure with linear regressions," Journal of Financial Economics, Elsevier, vol. 110(1), pages 110-138.
    24. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    25. Sylvia Kaufmann & Christian Schumacher, 2017. "Identifying relevant and irrelevant variables in sparse factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1123-1144, September.
    26. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    27. Jean Boivin & Marc P. Giannoni, 2007. "Global Forces and Monetary Policy Effectiveness," NBER Chapters, in: International Dimensions of Monetary Policy, pages 429-478, National Bureau of Economic Research, Inc.
    28. Harald Uhlig, 2004. "Do Technology Shocks Lead to a Fall in Total Hours Worked?," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 361-371, 04/05.
    29. Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2013. "Changes in the effects of monetary policy on disaggregate price dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 543-560.
    30. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    31. Sylvia Kaufmann & Christian Schumacher, 2013. "Bayesian estimation of sparse dynamic factor models with order-independent identification," Working Papers 13.04, Swiss National Bank, Study Center Gerzensee.
    32. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    33. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    34. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    35. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    36. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," PSE Working Papers halshs-02235543, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    2. Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    5. Sylvia Fruhwirth-Schnatter & Darjus Hosszejni & Hedibert Freitas Lopes, 2023. "When it counts -- Econometric identification of the basic factor model based on GLT structures," Papers 2301.06354, arXiv.org.
    6. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    7. Sylvia Kaufmann & Christian Schumacher, 2013. "Bayesian estimation of sparse dynamic factor models with order-independent identification," Working Papers 13.04, Swiss National Bank, Study Center Gerzensee.
    8. Herwartz, Helmut & Rohloff, Hannes, 2018. "Less bang for the buck? Assessing the role of inflation uncertainty for U.S. monetary policy transmission in a data rich environment," University of Göttingen Working Papers in Economics 358, University of Goettingen, Department of Economics.
    9. Maurizio Daniele & Julie Schnaitmann, 2019. "A Regularized Factor-augmented Vector Autoregressive Model," Papers 1912.06049, arXiv.org.
    10. Zongwu Cai & Xiyuan Liu, 2021. "Solving the Price Puzzle Via A Functional Coefficient Factor-Augmented VAR Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202106, University of Kansas, Department of Economics, revised Jan 2021.
    11. Juan José Echavarría & Andrés González, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
    12. Cosmas Dery & Apostolos Serletis, 2021. "Disentangling the Effects of Uncertainty, Monetary Policy and Leverage Shocks on the Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1029-1065, October.
    13. Özmen, M. Utku & Tuğan, Mustafa, 2022. "Heterogeneity in sectoral price and quantity responses to shocks to monetary policy," Journal of Macroeconomics, Elsevier, vol. 73(C).
    14. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    15. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    16. John W. Keating & Logan J. Kelly & A. Lee Smith & Victor J. Valcarcel, 2019. "A Model of Monetary Policy Shocks for Financial Crises and Normal Conditions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(1), pages 227-259, February.
    17. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    18. Velasco, Sofia, 2024. "Asymmetries in the transmission of monetary policy shocks over the business cycle: a Bayesian Quantile Factor Augmented VAR," Working Paper Series 2983, European Central Bank.
    19. Florio, Anna, 2018. "Nominal anchors and the price puzzle," Journal of Macroeconomics, Elsevier, vol. 58(C), pages 224-237.
    20. Daniel A. Dias & João B. Duarte, 2019. "Monetary policy, housing rents, and inflation dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 673-687, August.

    More about this item

    Keywords

    Bayesian FAVAR; sparsity; factor identification;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc18:181602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.