Inference on the maximal rank of time-varying covariance matrices using high-frequency data
Author
Abstract
Suggested Citation
DOI: 10.17169/refubium-32210
Download full text from publisher
References listed on IDEAS
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Weiming Li & Jing Gao & Kunpeng Li & Qiwei Yao, 2016. "Modeling Multivariate Volatilities via Latent Common Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 564-573, October.
- Hoffmann, Marc, 2002. "Rate of convergence for parametric estimation in a stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 147-170, January.
- Diebold, Francis X. & Li, Canlin, 2006.
"Forecasting the term structure of government bond yields,"
Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
- Francis X. Diebold & Canlin Li, 2002. "Forecasting the Term Structure of Government Bond Yields," Center for Financial Institutions Working Papers 02-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Francis X. Diebold & Canlin Li, 2003. "Forecasting the Term Structure of Government Bond Yields," NBER Working Papers 10048, National Bureau of Economic Research, Inc.
- Diebold, Francis X. & Li, Canlin, 2003. "Forecasting the term structure of government bond yields," CFS Working Paper Series 2004/09, Center for Financial Studies (CFS).
- Su, Liangjun & Wang, Xia, 2017. "On time-varying factor models: Estimation and testing," Journal of Econometrics, Elsevier, vol. 198(1), pages 84-101.
- Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
- Yacine Aït-Sahalia & Dacheng Xiu, 2019.
"Principal Component Analysis of High-Frequency Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 287-303, January.
- Yacine Aït-Sahalia & Dacheng Xiu, 2015. "Principal Component Analysis of High Frequency Data," NBER Working Papers 21584, National Bureau of Economic Research, Inc.
- Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2021. "High-dimensional estimation of quadratic variation based on penalized realized variance," Papers 2103.03237, arXiv.org.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
- Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Bucci & Michele Palma & Chao Zhang, 2024. "Geometric Deep Learning for Realized Covariance Matrix Forecasting," Papers 2412.09517, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matteo Barigozzi & Lorenzo Trapani, 2018.
"Determining the dimension of factor structures in non-stationary large datasets,"
Papers
1806.03647, arXiv.org.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Determining the dimension of factor structures in non-stationary large datasets," Discussion Papers 18/01, University of Nottingham, Granger Centre for Time Series Econometrics.
- Jaeheon Jung, 2019. "Estimating a Large Covariance Matrix in Time-varying Factor Models," Papers 1910.11965, arXiv.org.
- Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
- Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Venetis, Ioannis & Ladas, Avgoustinos, 2022. "Co-movement and global factors in sovereign bond yields," MPRA Paper 115801, University Library of Munich, Germany.
- Moench, Emanuel, 2008.
"Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach,"
Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
- Mönch, Emanuel, 2005. "Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach," Working Paper Series 544, European Central Bank.
- Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019.
"On the robustness of the principal volatility components,"
Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
- Trucíos Maza, Carlos César & Hotta, Luiz Koodi & Pereira, Pedro L. Valls, 2018. "On the robustness of the principal volatility components," Textos para discussão 474, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Choi, Sung Hoon & Kim, Donggyu, 2023.
"Large volatility matrix analysis using global and national factor models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
- Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
- Urga, Giovanni & Wang, Fa, 2022.
"Estimation and inference for high dimensional factor model with regime switching,"
MPRA Paper
113172, University Library of Munich, Germany.
- Giovanni Urga & Fa Wang, 2022. "Estimation and Inference for High Dimensional Factor Model with Regime Switching," Papers 2205.12126, arXiv.org, revised Apr 2023.
- Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
- Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
- Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
- Urga, Giovanni & Wang, Fa, 2024. "Estimation and inference for high dimensional factor model with regime switching," Journal of Econometrics, Elsevier, vol. 241(2).
- Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021.
"Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Guangbao Guo & Chunjie Wei & Guoqi Qian, 2023. "Sparse online principal component analysis for parameter estimation in factor model," Computational Statistics, Springer, vol. 38(2), pages 1095-1116, June.
- Jushan Bai & Kunpeng Li, 2016.
"Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension,"
The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
- Bai, Jushan & Li, Kunpeng, 2012. "Maximum likelihood estimation and inference for approximate factor models of high dimension," MPRA Paper 42099, University Library of Munich, Germany, revised 19 Oct 2012.
- Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
- He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
More about this item
Keywords
empirical covariance matrix; rank detection; signal detection rate; matrix concentration; eigenvalue perturbation; principal component analysis; factor model; term structure;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-11-15 (Econometrics)
- NEP-MST-2021-11-15 (Market Microstructure)
- NEP-ORE-2021-11-15 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fubsbe:202114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.