IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/68531.html
   My bibliography  Save this paper

Testing for high-dimensional white noise using maximum cross-correlations

Author

Listed:
  • Chang, Jinyuan
  • Yao, Qiwei
  • Zhou, Wen

Abstract

We propose a new omnibus test for vector white noise using the maximum absolute autocorrelations and cross-correlations of the component series. Based on an approximation by the L∞-norm of a normal random vector, the critical value of the test can be evaluated by bootstrapping from a multivariate normal distribution. In contrast to the conventional white noise test, the new method is proved to be valid for testing departure from white noise that is not independent and identically distributed. We illustrate the accuracy and the power of the proposed test by simulation, which also shows that the new test outperforms several commonly used methods, including the Lagrange multiplier test and the multivariate Box–Pierce portmanteau tests, especially when the dimension of the time series is high in relation to the sample size. The numerical results also indicate that the performance of the new test can be further enhanced when it is applied to pre-transformed data obtained via the time series principal component analysis proposed by J. Chang, B. Guo and Q. Yao (arXiv:1410.2323). The proposed procedures have been implemented in an R package.

Suggested Citation

  • Chang, Jinyuan & Yao, Qiwei & Zhou, Wen, 2017. "Testing for high-dimensional white noise using maximum cross-correlations," LSE Research Online Documents on Economics 68531, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:68531
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/68531/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    4. Durlauf, Steven N., 1991. "Spectral based testing of the martingale hypothesis," Journal of Econometrics, Elsevier, vol. 50(3), pages 355-376, December.
    5. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    6. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    8. Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
    9. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    10. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
    11. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    12. Jianqing Fan, 2004. "Generalised likelihood ratio tests for spectral density," Biometrika, Biometrika Trust, vol. 91(1), pages 195-209, March.
    13. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    14. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    15. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.
    16. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    17. Horowitz, Joel L. & Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2006. "Bootstrapping the Box-Pierce Q test: A robust test of uncorrelatedness," Journal of Econometrics, Elsevier, vol. 133(2), pages 841-862, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    2. Loubaton, Philippe & Rosuel, Alexis & Vallet, Pascal, 2023. "On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    3. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Xiandeng Jiang & Le Chang & Yanlin Shi, 2023. "Housing price diffusions in mainland China: evidence from a spatially penalized graphical VAR model," Empirical Economics, Springer, vol. 64(2), pages 765-795, February.
    5. Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
    6. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
    7. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    8. He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    9. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2022. "Data-driven portmanteau tests for time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 675-698, September.
    10. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    11. Tsay, Ruey S., 2020. "Testing serial correlations in high-dimensional time series via extreme value theory," Journal of Econometrics, Elsevier, vol. 216(1), pages 106-117.
    12. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    13. Li, Shuangbo & Zhang, Li-Xin, 2019. "Identifying the number of factors using a white noise test," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 92-99.
    14. Baek, Changryong & Gates, Katheleen M. & Leinwand, Benjamin & Pipiras, Vladas, 2021. "Two sample tests for high-dimensional autocovariances," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
    2. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    3. Guay, Alain & Guerre, Emmanuel & Lazarová, Štěpána, 2013. "Robust adaptive rate-optimal testing for the white noise hypothesis," Journal of Econometrics, Elsevier, vol. 176(2), pages 134-145.
    4. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    5. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
    6. Yongxia Zhang & Qi Wang & Maozai Tian, 2022. "Smoothed Quantile Regression with Factor-Augmented Regularized Variable Selection for High Correlated Data," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    7. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    8. Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
    9. Adrian Wai‐Kong Cheung & Jen‐Je Su & Astrophel Kim Choo, 2012. "Are exchange rates serially correlated? New evidence from the Euro FX markets," Review of Financial Economics, John Wiley & Sons, vol. 21(1), pages 14-20, January.
    10. Xiao, Han & Wu, Wei Biao, 2019. "Portmanteau Test and Simultaneous Inference for Serial Covariances," IRTG 1792 Discussion Papers 2019-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. Mengya Liu & Fukan Zhu & Ke Zhu, 2020. "Multi-frequency-band tests for white noise under heteroskedasticity," Papers 2004.09161, arXiv.org.
    12. Fan, Jianqing & Ke, Yuan & Wang, Kaizheng, 2020. "Factor-adjusted regularized model selection," Journal of Econometrics, Elsevier, vol. 216(1), pages 71-85.
    13. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    14. Adrian Wai-Kong Cheung & Jen-Je Su & Astrophel Kim Choo, 2011. "Are Euro exchange rates markets efficient? New evidence from a large panel," Discussion Papers in Finance finance:201109, Griffith University, Department of Accounting, Finance and Economics.
    15. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    16. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    17. Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
    18. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    19. Li, Shuangbo & Zhang, Li-Xin, 2019. "Identifying the number of factors using a white noise test," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 92-99.
    20. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.

    More about this item

    Keywords

    autocorrelation; normal approximation; parametric bootstrap; portmanteau test; time series principal component analysis; vector white noise;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:68531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.