IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i7p2179-2207.html
   My bibliography  Save this article

Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case

Author

Listed:
  • Heiny, Johannes
  • Mikosch, Thomas

Abstract

In this paper we study the joint distributional convergence of the largest eigenvalues of the sample covariance matrix of a p-dimensional time series with iid entries when p converges to infinity together with the sample size n. We consider only heavy-tailed time series in the sense that the entries satisfy some regular variation condition which ensures that their fourth moment is infinite. In this case, Soshnikov (2004, 2006) and Auffinger et al. (2009) proved the weak convergence of the point processes of the normalized eigenvalues of the sample covariance matrix towards an inhomogeneous Poisson process which implies in turn that the largest eigenvalue converges in distribution to a Fréchet distributed random variable. They proved these results under the assumption that p and n are proportional to each other. In this paper we show that the aforementioned results remain valid if p grows at any polynomial rate. The proofs are different from those in Auffinger et al. (2009) and Soshnikov (2004, 2006); we employ large deviation techniques to achieve them. The proofs reveal that only the diagonal of the sample covariance matrix is relevant for the asymptotic behavior of the largest eigenvalues and the corresponding eigenvectors which are close to the canonical basis vectors. We also discuss extensions of the results to sample autocovariance matrices.

Suggested Citation

  • Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:7:p:2179-2207
    DOI: 10.1016/j.spa.2016.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916301934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Silverstein, Jack W. & Yin, Y. Q., 1988. "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 166-168, August.
    2. Davis, Richard A. & Pfaffel, Oliver & Stelzer, Robert, 2014. "Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 18-50.
    3. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asma Teimouri & Mahbanoo Tata & Mohsen Rezapour & Rafal Kulik & Narayanaswamy Balakrishnan, 2021. "Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1353-1375, December.
    2. Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
    3. Daisuke Kurisu & Taisuke Otsu, 2021. "Nonparametric inference for extremal conditional quantiles," STICERD - Econometrics Paper Series 616, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asma Teimouri & Mahbanoo Tata & Mohsen Rezapour & Rafal Kulik & Narayanaswamy Balakrishnan, 2021. "Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1353-1375, December.
    2. Heiny, Johannes & Mikosch, Thomas, 2018. "Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2779-2815.
    3. Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
    4. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    5. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    6. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    7. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    8. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    9. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    10. Feng, Guohua & Gao, Jiti & Peng, Bin, 2022. "An integrated panel data approach to modelling economic growth," Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
    11. Jian Zhang & Jie Li, 2022. "Factorized estimation of high‐dimensional nonparametric covariance models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 542-567, June.
    12. Li, Zeng & Pan, Guangming & Yao, Jianfeng, 2015. "On singular value distribution of large-dimensional autocovariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 119-140.
    13. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    14. Ma, Shujie & Linton, Oliver & Gao, Jiti, 2021. "Estimation and inference in semiparametric quantile factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 295-323.
    15. Kamil Jurczak, 2015. "A Universal Expectation Bound on Empirical Projections of Deformed Random Matrices," Journal of Theoretical Probability, Springer, vol. 28(2), pages 650-666, June.
    16. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    17. Hallin, Marc & Lippi, Marco, 2013. "Factor models in high-dimensional time series—A time-domain approach," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
    18. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
    19. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    20. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:7:p:2179-2207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.