IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/106994.html
   My bibliography  Save this paper

Error-correction factor models for high-dimensional cointegrated time series

Author

Listed:
  • Tu, Yundong
  • Yao, Qiwei
  • Zhang, Rongmao

Abstract

Cointegration inferences often rely on a correct specification for the short-run dynamic vector autoregression. However, this specification is unknown, a priori. A lag length that is too small leads to an erroneous inference as a result of the misspecification. In contrast, using too many lags leads to a dramatic increase in the number of parameters, especially when the dimension of the time series is high. In this paper, we develop a new methodology which adds an error-correction term for the long-run equilibrium to a latent factor model in order to model the short-run dynamic relationship. The inferences use the eigenanalysis-based methods to estimate the cointegration and latent factor process. The proposed error-correction factor model does not require an explicit specification of the short-run dynamics, and is particularly effective for high-dimensional cases, in which the standard error-correction suffers from overparametrization. In addition, the model improves the predictive performance of the pure factor model. The asymptotic properties of the proposed methods are established when the dimension of the time series is either fixed or diverging slowly as the length of the time series goes to infinity. Lastly, the performance of the model is evaluated using both simulated and real data sets.

Suggested Citation

  • Tu, Yundong & Yao, Qiwei & Zhang, Rongmao, 2020. "Error-correction factor models for high-dimensional cointegrated time series," LSE Research Online Documents on Economics 106994, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:106994
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/106994/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liao, Zhipeng & Phillips, Peter C. B., 2015. "Automated Estimation Of Vector Error Correction Models," Econometric Theory, Cambridge University Press, vol. 31(3), pages 581-646, June.
    2. Issler, Joao Victor & Vahid, Farshid, 2001. "Common cycles and the importance of transitory shocks to macroeconomic aggregates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 449-475, June.
    3. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    4. GONZALO, Jesus & PITARAKIS, Jean-Yves, 1994. "Comovements in Large Systems," LIDAM Discussion Papers CORE 1994065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    6. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    7. Staudenmayer, John & Buonaccorsi, John P., 2005. "Measurement Error in Linear Autoregressive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 841-852, September.
    8. Alvaro Escribano & Daniel Peña, 1994. "Cointegration And Common Factors," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 577-586, November.
    9. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    10. Chao, John C. & Phillips, Peter C. B., 1999. "Model selection in partially nonstationary vector autoregressive processes with reduced rank structure," Journal of Econometrics, Elsevier, vol. 91(2), pages 227-271, August.
    11. Vahid, Farshid & Issler, Joao Victor, 2002. "The importance of common cyclical features in VAR analysis: a Monte-Carlo study," Journal of Econometrics, Elsevier, vol. 109(2), pages 341-363, August.
    12. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    13. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    14. Athanasopoulos, George & Vahid, Farshid, 2008. "VARMA versus VAR for Macroeconomic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 237-252, April.
    15. Pena, Daniel & Poncela, Pilar, 2004. "Forecasting with nonstationary dynamic factor models," Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
    16. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    17. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    18. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    19. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    20. Ho, Mun S & Sorensen, Bent E, 1996. "Finding Cointegration Rank in High Dimensional Systems Using the Johansen Test: An Illustration Using Data Based Monte Carlo Simulations," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 726-732, November.
    21. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2024. "Inference in Heavy-Tailed Nonstationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 565-581, January.
    2. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
    2. Neri, Marcelo Côrtes, 2014. "Brazil's middle classes," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 759, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    3. Norman J. Morin, 2006. "Likelihood ratio tests on cointegrating vectors, disequilibrium adjustment vectors, and their orthogonal complements," Finance and Economics Discussion Series 2006-21, Board of Governors of the Federal Reserve System (U.S.).
    4. Heather M Anderson & Farshid Vahid, 2010. "VARs, Cointegration and Common Cycle Restrictions," Monash Econometrics and Business Statistics Working Papers 14/10, Monash University, Department of Econometrics and Business Statistics.
    5. Athanasopoulos, George & Issler, João Victor & Guillen, Osmani Teixeira Carvalho, 2005. "Forecasting accuracy and estimation uncertainty using VAR models with short- and long-term economic restrictions: a Monte-Carlo study," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 589, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    6. Osmani Teixeira de Carvalho Guillén & Alain Hecq & João Victor Issler & Diogo Saraiva, 2013. "Time Series under Present-Value-Model Short- and Long-run Co-movement Restrictions," Working Papers Series 330, Central Bank of Brazil, Research Department.
    7. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    8. Hecq, A.W. & Issler, J.V., 2012. "A common-feature approach for testing present-value restrictions with financial data," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    10. repec:fgv:epgewp:736 is not listed on IDEAS
    11. Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021. "Commodity prices and global economic activity: A derived-demand approach," Energy Economics, Elsevier, vol. 96(C).
    12. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    14. Carlos Enrique Carrasco Gutiérrez & Reinaldo Castro Souza & Osmani Teixeira de Carvalho Guillén, 2007. "Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclical Features," Working Papers Series 139, Central Bank of Brazil, Research Department.
    15. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    16. Rabindra Nepal & John Foster, 2016. "Testing for Market Integration in the Australian National Electricity Market," The Energy Journal, , vol. 37(4), pages 215-238, October.
    17. Gutierrez, Carlos Enrique Carrasco & Souza, Reinaldo Castro & Guillén, Osmani Teixeira de Carvalho, 2009. "Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclical Features," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 29(1), May.
    18. McCrae, Michael, et al, 2002. "Can Cointegration-Based Forecasting Outperform Univariate Models? An Application to Asian Exchange Rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 355-380, August.
    19. Hiroaki Chigira & Taku Yamamoto, 2009. "Forecasting in large cointegrated processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 631-650.
    20. Shintani, Mototsugu, 2001. "A simple cointegrating rank test without vector autoregression," Journal of Econometrics, Elsevier, vol. 105(2), pages 337-362, December.
    21. Vahid, Farshid & Issler, Joao Victor, 2002. "The importance of common cyclical features in VAR analysis: a Monte-Carlo study," Journal of Econometrics, Elsevier, vol. 109(2), pages 341-363, August.

    More about this item

    Keywords

    cointegration; eigenanalysis; factor models; nonstationary processes; vector time series;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:106994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.