IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i4d10.1007_s11009-020-09818-6.html
   My bibliography  Save this article

Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process

Author

Listed:
  • Asma Teimouri

    (Shahid Bahonar University of Kerman)

  • Mahbanoo Tata

    (Shahid Bahonar University of Kerman)

  • Mohsen Rezapour

    (The University of Texas, Health Science Center)

  • Rafal Kulik

    (University of Ottawa)

  • Narayanaswamy Balakrishnan

    (McMaster University)

Abstract

In this paper, we study the limiting behavior of eigenvalues of the variance-covariance matrix of a random sample from a multivariate subordinator heavy-tailed Lévy process, and use large deviations of a heavy-tailed stochastic process to derive the limit distributions of its components. We confine our study to multivariate Lévy processes with regularly varying random components and possibly different indices of regularity. Assuming that the product of increments of the marginal components are also regularly varying random variables, we show that the product of two dependent regularly varying Log-Gamma random variables with integer-valued shape parameters is also a regularly varying random variable with index depending on the correlation between the original variables. This result enables us to derive the limiting tail behavior of sample variance-covariance matrix from a multivariate Lévy process having Log-Gamma components with integer-valued shape parameters and different indices of regularity.

Suggested Citation

  • Asma Teimouri & Mahbanoo Tata & Mohsen Rezapour & Rafal Kulik & Narayanaswamy Balakrishnan, 2021. "Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1353-1375, December.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09818-6
    DOI: 10.1007/s11009-020-09818-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09818-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09818-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohu Li & Jintang Wu & Jinsen Zhuang, 2015. "Asymptotic Multivariate Finite-time Ruin Probability with Statistically Dependent Heavy-tailed Claims," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 463-477, June.
    2. Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
    3. Davis, Richard A. & Pfaffel, Oliver & Stelzer, Robert, 2014. "Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 18-50.
    4. Davis, Richard A. & Mikosch, Thomas & Pfaffel, Oliver, 2016. "Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 767-799.
    5. Hult, Henrik & Lindskog, Filip, 2005. "Extremal behavior of regularly varying stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 249-274, February.
    6. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    7. Claudio Heinrich & Mark Podolskij, 2014. "On spectral distribution of high dimensional covariation matrices," CREATES Research Papers 2014-54, Department of Economics and Business Economics, Aarhus University.
    8. Lemaire, Jean & Zi, Hongmin, 1994. "A Comparative Analysis of 30 Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 287-309, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
    2. Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
    3. Daisuke Kurisu & Taisuke Otsu, 2021. "Nonparametric inference for extremal conditional quantiles," STICERD - Econometrics Paper Series 616, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Heiny, Johannes & Mikosch, Thomas, 2018. "Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices," Stochastic Processes and their Applications, Elsevier, vol. 128(8), pages 2779-2815.
    5. Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
    6. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    7. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    8. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    9. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    10. Davis, Richard A. & Mikosch, Thomas & Pfaffel, Oliver, 2016. "Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 767-799.
    11. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    12. Jaeheon Jung, 2019. "Estimating a Large Covariance Matrix in Time-varying Factor Models," Papers 1910.11965, arXiv.org.
    13. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    14. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    15. Søren Asmussen, 2014. "Modeling and Performance of Bonus-Malus Systems: Stationarity versus Age-Correction," Risks, MDPI, vol. 2(1), pages 1-25, March.
    16. Zhou, Ruichao & Wu, Jianhong, 2023. "Determining the number of change-points in high-dimensional factor models by cross-validation with matrix completion," Economics Letters, Elsevier, vol. 232(C).
    17. Cline, Daren B.H., 2007. "Regular variation of order 1 nonlinear AR-ARCH models," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 840-861, July.
    18. Andrés García-Medina & Graciela González Farías, 2020. "Transfer entropy as a variable selection methodology of cryptocurrencies in the framework of a high dimensional predictive model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-31, January.
    19. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    20. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:4:d:10.1007_s11009-020-09818-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.