IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v44y2023i5-6p578-600.html
   My bibliography  Save this article

Factor models for high‐dimensional functional time series I: Representation results

Author

Listed:
  • Marc Hallin
  • Gilles Nisol
  • Shahin Tavakoli

Abstract

In this article, which consists of two parts (Part I: representation results; Part II: estimation and forecasting methods), we set up the theoretical foundations for a high‐dimensional functional factor model approach in the analysis of large cross‐sections (panels) of functional time series (FTS). In Part I, we establish a representation result stating that, under mild assumptions on the covariance operator of the cross‐section, we can represent each FTS as the sum of a common component driven by scalar factors loaded via functional loadings, and a mildly cross‐correlated idiosyncratic component. Our model and theory are developed in a general Hilbert space setting that allows for mixed panels of functional and scalar time series. We then turn, in Part II, to the identification of the number of factors, and the estimation of the factors, their loadings, and the common components. We provide a family of information criteria for identifying the number of factors, and prove their consistency. We provide average error bounds for the estimators of the factors, loadings, and common components; our results encompass the scalar case, for which they reproduce and extend, under weaker conditions, well‐established similar results. Under slightly stronger assumptions, we also provide uniform bounds for the estimators of factors, loadings, and common components, thus extending existing scalar results. Our consistency results in the asymptotic regime where the number N of series and the number T of time observations diverge thus extend to the functional context the ‘blessing of dimensionality’ that explains the success of factor models in the analysis of high‐dimensional (scalar) time series. We provide numerical illustrations that corroborate the convergence rates predicted by the theory, and provide a finer understanding of the interplay between N and T for estimation purposes. We conclude with an application to forecasting mortality curves, where we demonstrate that our approach outperforms existing methods.

Suggested Citation

  • Marc Hallin & Gilles Nisol & Shahin Tavakoli, 2023. "Factor models for high‐dimensional functional time series I: Representation results," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 578-600, September.
  • Handle: RePEc:bla:jtsera:v:44:y:2023:i:5-6:p:578-600
    DOI: 10.1111/jtsa.12676
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12676
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017. "Functional Generalized Autoregressive Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    5. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    6. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    8. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
    9. Patrick Bardsley & Lajos Horváth & Piotr Kokoszka & Gabriel Young, 2017. "Change point tests in functional factor models with application to yield curves," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 86-117, February.
    10. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    11. Piotr Kokoszka & Hong Miao & Matthew Reimherr & Bahaeddine Taoufik, 2018. "Dynamic Functional Regression with Application to the Cross-section of Returns," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 461-485.
    12. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    13. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    14. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    15. Tomasz Górecki & Siegfried Hörmann & Lajos Horváth & Piotr Kokoszka, 2018. "Testing Normality of Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(4), pages 471-487, July.
    16. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    17. Daniel R. Kowal & David S. Matteson & David Ruppert, 2017. "A Bayesian Multivariate Functional Dynamic Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 733-744, April.
    18. Piotr Kokoszka & Hong Miao & Xi Zhang, 2015. "Functional Dynamic Factor Model for Intraday Price Curves," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 456-477.
    19. Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
    20. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-1323, September.
    21. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
    22. Piotr Kokoszka & Matthew Reimherr, 2013. "Determining the order of the functional autoregressive model," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 116-129, January.
    23. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    24. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    25. Raymond K. W. Wong & Yehua Li & Zhengyuan Zhu, 2019. "Partially Linear Functional Additive Models for Multivariate Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 406-418, January.
    26. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    27. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    28. Shahin Tavakoli & Victor M. Panaretos, 2016. "Detecting and Localizing Differences in Functional Time Series Dynamics: A Case Study in Molecular Biophysics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1020-1035, July.
    29. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    30. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    31. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahin Tavakoli & Gilles Nisol & Marc Hallin, 2023. "Factor models for high‐dimensional functional time series II: Estimation and forecasting," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 601-621, September.
    2. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    3. Barigozzi, Matteo & Hallin, Marc & Luciani, Matteo & Zaffaroni, Paolo, 2024. "Inferential theory for generalized dynamic factor models," Journal of Econometrics, Elsevier, vol. 239(2).
    4. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    7. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
    8. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    9. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    10. Hallin, Marc & Lippi, Marco, 2013. "Factor models in high-dimensional time series—A time-domain approach," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
    11. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
    12. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    13. Christian Genest, 2024. "A Conversation With Marc Hallin," International Statistical Review, International Statistical Institute, vol. 92(2), pages 137-159, August.
    14. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    15. Chenlei Leng & Degui Li & Hanlin Shang & Yingcun Xia, 2024. "Covariance Function Estimation for High-Dimensional Functional Time Series with Dual Factor Structures," Papers 2401.05784, arXiv.org, revised Jan 2024.
    16. Philipp Gersing & Christoph Rust & Manfred Deistler, 2023. "Weak Factors are Everywhere," Papers 2307.10067, arXiv.org, revised Jan 2024.
    17. Marc Hallin, 2022. "Manfred Deistler and the General Dynamic Factor Model Approach to the Analysis of High-Dimensional Time Series," Working Papers ECARES 2022-30, ULB -- Universite Libre de Bruxelles.
    18. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    19. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    20. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:44:y:2023:i:5-6:p:578-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.