IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324000823.html
   My bibliography  Save this article

Conditional mean dimension reduction for tensor time series

Author

Listed:
  • Lee, Chung Eun
  • Zhang, Xin

Abstract

The dimension reduction problem for a stationary tensor time series is addressed. The goal is to remove linear combinations of the tensor time series that are mean independent of the past, without imposing any parametric models or distributional assumptions. To achieve this goal, a new metric called cumulative tensor martingale difference divergence is introduced and its theoretical properties are studied. Unlike existing methods, the proposed approach achieves dimension reduction by estimating a distinctive subspace that can fully retain the conditional mean information. By focusing on the conditional mean, the proposed dimension reduction method is potentially more accurate in prediction. The method can be viewed as a factor model-based approach that extends the existing techniques for estimating central subspace or central mean subspace in vector time series. The effectiveness of the proposed method is illustrated by extensive simulations and two real-world data applications.

Suggested Citation

  • Lee, Chung Eun & Zhang, Xin, 2024. "Conditional mean dimension reduction for tensor time series," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000823
    DOI: 10.1016/j.csda.2024.107998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000823
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chung Eun Lee & Xiaofeng Shao, 2018. "Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Stationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 216-229, January.
    2. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    3. Elynn Y. Chen & Ruey S. Tsay & Rong Chen, 2020. "Constrained Factor Models for High-Dimensional Matrix-Variate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 775-793, April.
    4. Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
    5. Jingke Zhou & Lixing Zhu, 2021. "Modified martingale difference correlations," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(2), pages 359-386, April.
    6. Clifford Lam & Qiwei Yao & Neil Bathia, 2011. "Estimation of latent factors for high-dimensional time series," Biometrika, Biometrika Trust, vol. 98(4), pages 901-918.
    7. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    8. Lexin Li & Xin Zhang, 2017. "Parsimonious Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1131-1146, July.
    9. Xiaofeng Shao & Jingsi Zhang, 2014. "Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1302-1318, September.
    10. Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
    11. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    12. Chung Eun Lee & Xiaofeng Shao, 2020. "Volatility Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Multivariate Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 80-92, January.
    13. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    2. Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
    3. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    4. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    5. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    6. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    7. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    8. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    9. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    10. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    11. Chen Tang & Yanlin Shi, 2021. "Forecasting High-Dimensional Financial Functional Time Series: An Application to Constituent Stocks in Dow Jones Index," JRFM, MDPI, vol. 14(8), pages 1-13, July.
    12. Liu, Xialu & Chen, Rong, 2020. "Threshold factor models for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 53-70.
    13. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    14. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
    15. Valdério Anselmo Reisen & Céline Lévy-Leduc & Edson Zambon Monte & Pascal Bondon, 2024. "A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method," Statistical Papers, Springer, vol. 65(5), pages 2865-2886, July.
    16. Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
    17. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
    19. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    20. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.