IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v202y2023ics0167715223001281.html
   My bibliography  Save this article

Matrix-variate data analysis by two-way factor model with replicated observations

Author

Listed:
  • Li, Yan
  • Gao, Zhigen
  • Huang, Wei
  • Guo, Jianhua

Abstract

Motivated by recent work on matrix-variate data analysis in various scientific domains, we propose a two-way factor model (2wFMs) to capture the separable effects of row and column attributes. This paper studies the identification conditions of 2wFMs and develops a block alternative optimization algorithm for maximum likelihood estimation (MLE). The asymptotic theories for the maximum likelihood estimators are established. Monte Carlo simulations show that the method we propose is effective and robust.

Suggested Citation

  • Li, Yan & Gao, Zhigen & Huang, Wei & Guo, Jianhua, 2023. "Matrix-variate data analysis by two-way factor model with replicated observations," Statistics & Probability Letters, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:stapro:v:202:y:2023:i:c:s0167715223001281
    DOI: 10.1016/j.spl.2023.109904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223001281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. Xinbing Kong, 2020. "A random-perturbation-based rank estimator of the number of factors," Biometrika, Biometrika Trust, vol. 107(2), pages 505-511.
    3. Elynn Y. Chen & Ruey S. Tsay & Rong Chen, 2020. "Constrained Factor Models for High-Dimensional Matrix-Variate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 775-793, April.
    4. Xinbing Kong & Jiangyan Wang & Jinbao Xing & Chao Xu & Chao Ying, 2019. "Factor and Idiosyncratic Empirical Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1138-1146, July.
    5. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    6. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    7. Jianqing Fan & Jianhua Guo & Shurong Zheng, 2022. "Estimating Number of Factors by Adjusted Eigenvalues Thresholding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 852-861, April.
    8. Amemiya, Yasuo & Fuller, Wayne A. & Pantula, Sastry G., 1987. "The asymptotic distributions of some estimators for a factor analysis model," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 51-64, June.
    9. Rong Chen & Dan Yang & Cun-Hui Zhang, 2022. "Factor Models for High-Dimensional Tensor Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 94-116, January.
    10. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    11. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    12. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    13. Yong He & Xinbing Kong & Long Yu & Xinsheng Zhang, 2022. "Large-Dimensional Factor Analysis Without Moment Constraints," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 302-312, January.
    14. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    2. Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
    3. Xin-Bing Kong & Yong-Xin Liu & Long Yu & Peng Zhao, 2022. "Matrix Quantile Factor Model," Papers 2208.08693, arXiv.org, revised Aug 2024.
    4. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    5. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
    6. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    7. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    8. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    9. Xiao Huang, 2023. "Composite Quantile Factor Models," Papers 2308.02450, arXiv.org.
    10. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    11. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    12. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    13. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    14. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    15. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    16. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    17. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    18. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    19. Yongxia Zhang & Qi Wang & Maozai Tian, 2022. "Smoothed Quantile Regression with Factor-Augmented Regularized Variable Selection for High Correlated Data," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    20. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018. "Factor-Driven Two-Regime Regression," Department of Economics Working Papers 2018-14, McMaster University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:202:y:2023:i:c:s0167715223001281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.