IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i11p4014-4023.html
   My bibliography  Save this item

Wind power forecasting uncertainty and unit commitment

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
  2. Fotouhi Ghazvini, Mohammad Ali & Canizes, Bruno & Vale, Zita & Morais, Hugo, 2013. "Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market," Applied Energy, Elsevier, vol. 101(C), pages 667-677.
  3. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
  4. Aziz Ezzat, Ahmed, 2020. "Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations," Applied Energy, Elsevier, vol. 269(C).
  5. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
  6. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
  7. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
  8. Mostafa Farrokhabadi, 2019. "Data-Driven Mitigation of Energy Scheduling Inaccuracy in Renewable-Penetrated Grids: Summerside Electric Use Case," Energies, MDPI, vol. 12(12), pages 1-23, June.
  9. Xydas, Erotokritos & Qadrdan, Meysam & Marmaras, Charalampos & Cipcigan, Liana & Jenkins, Nick & Ameli, Hossein, 2017. "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators," Applied Energy, Elsevier, vol. 192(C), pages 382-394.
  10. Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
  11. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
  12. Alvarez-Mendoza, Fernanda & Bacher, Peder & Madsen, Henrik & Angeles-Camacho, César, 2017. "Stochastic model of wind-fuel cell for a semi-dispatchable power generation," Applied Energy, Elsevier, vol. 193(C), pages 139-148.
  13. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
  14. Mc Garrigle, E.V. & Leahy, P.G., 2015. "Quantifying the value of improved wind energy forecasts in a pool-based electricity market," Renewable Energy, Elsevier, vol. 80(C), pages 517-524.
  15. Janne Huotari & Antti Ritari & Jari Vepsäläinen & Kari Tammi, 2020. "Hybrid Ship Unit Commitment with Demand Prediction and Model Predictive Control," Energies, MDPI, vol. 13(18), pages 1-21, September.
  16. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
  17. Sharifzadeh, Mahdi & Lubiano-Walochik, Helena & Shah, Nilay, 2017. "Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 385-398.
  18. Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
  19. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
  20. Hui Liu & Zhenggang Fan & Haimin Xie & Ni Wang, 2022. "Distributionally Robust Joint Chance-Constrained Dispatch for Electricity–Gas–Heat Integrated Energy System Considering Wind Uncertainty," Energies, MDPI, vol. 15(5), pages 1-18, February.
  21. Liang, Zhengtang & Liang, Jun & Zhang, Li & Wang, Chengfu & Yun, Zhihao & Zhang, Xu, 2015. "Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis," Applied Energy, Elsevier, vol. 159(C), pages 51-61.
  22. Hyeon-Gon Park & Jae-Kun Lyu & YongCheol Kang & Jong-Keun Park, 2014. "Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power," Energies, MDPI, vol. 7(7), pages 1-19, July.
  23. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
  24. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
  25. Geng, Zhaowei & Conejo, Antonio J. & Chen, Qixin & Xia, Qing & Kang, Chongqing, 2017. "Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production," Applied Energy, Elsevier, vol. 193(C), pages 540-549.
  26. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
  27. Haque, A.N.M.M. & Ibn Saif, A.U.N. & Nguyen, P.H. & Torbaghan, S.S., 2016. "Exploration of dispatch model integrating wind generators and electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1441-1451.
  28. Moghaddas Tafreshi, Seyed Masoud & Ranjbarzadeh, Hassan & Jafari, Mehdi & Khayyam, Hamid, 2016. "A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 934-947.
  29. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Guo, Xiaojun & Zhang, Mingming, 2019. "Low-carbon power dispatch with wind power based on carbon trading mechanism," Energy, Elsevier, vol. 170(C), pages 250-260.
  30. Chen, J.J. & Qi, B.X. & Peng, K. & Li, Y. & Zhao, Y.L., 2020. "Conditional value-at-credibility for random fuzzy wind power in demand response integrated multi-period economic emission dispatch," Applied Energy, Elsevier, vol. 261(C).
  31. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
  32. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
  33. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
  34. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
  35. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
  36. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
  37. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
  38. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
  39. Chen, Yue & Wei, Wei & Liu, Feng & Mei, Shengwei, 2016. "Distributionally robust hydro-thermal-wind economic dispatch," Applied Energy, Elsevier, vol. 173(C), pages 511-519.
  40. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
  41. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
  42. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
  43. Zhang, Jie & Jain, Rishabh & Hodge, Bri-Mathias, 2016. "A data-driven method to characterize turbulence-caused uncertainty in wind power generation," Energy, Elsevier, vol. 112(C), pages 1139-1152.
  44. Linas Gelažanskas & Kelum A. A. Gamage, 2016. "Distributed Energy Storage Using Residential Hot Water Heaters," Energies, MDPI, vol. 9(3), pages 1-13, February.
  45. Conor Sweeney & Ricardo J. Bessa & Jethro Browell & Pierre Pinson, 2020. "The future of forecasting for renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(2), March.
  46. Naixiao Wang & Xinlei Cai & Linwei Sang & Tingxiang Zhang & Zhongkai Yi & Ying Xu, 2024. "Online Distribution Network Scheduling via Provably Robust Learning Approach," Energies, MDPI, vol. 17(6), pages 1-13, March.
  47. Hyeongon Park & Joonhyung Park & Jong-Young Park & Jae-Haeng Heo, 2017. "Considering Maintenance Cost in Unit Commitment Problems," Energies, MDPI, vol. 10(11), pages 1-12, November.
  48. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
  49. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
  50. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
  51. Rasku, Topi & Miettinen, Jari & Rinne, Erkka & Kiviluoma, Juha, 2020. "Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system," Energy, Elsevier, vol. 192(C).
  52. Rachunok, Benjamin & Staid, Andrea & Watson, Jean-Paul & Woodruff, David L., 2020. "Assessment of wind power scenario creation methods for stochastic power systems operations," Applied Energy, Elsevier, vol. 268(C).
  53. Jae-Kun Lyu & Jae-Haeng Heo & Jong-Keun Park & Yong-Cheol Kang, 2013. "Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects," Energies, MDPI, vol. 6(11), pages 1-21, October.
  54. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
  55. Mazzola, Simone & Vergara, Claudio & Astolfi, Marco & Li, Vivian & Perez-Arriaga, Ignacio & Macchi, Ennio, 2017. "Assessing the value of forecast-based dispatch in the operation of off-grid rural microgrids," Renewable Energy, Elsevier, vol. 108(C), pages 116-125.
  56. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
  57. Mohammad Masih Sediqi & Mohammed Elsayed Lotfy & Abdul Matin Ibrahimi & Tomonobu Senjyu & Narayanan. K, 2019. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
  58. Seljom, Pernille & Tomasgard, Asgeir, 2015. "Short-term uncertainty in long-term energy system models — A case study of wind power in Denmark," Energy Economics, Elsevier, vol. 49(C), pages 157-167.
  59. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
  60. Tang, Chenghui & Wang, Yishen & Xu, Jian & Sun, Yuanzhang & Zhang, Baosen, 2018. "Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations," Applied Energy, Elsevier, vol. 221(C), pages 348-357.
  61. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
  62. Waite, Michael & Modi, Vijay, 2016. "Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand," Applied Energy, Elsevier, vol. 183(C), pages 299-317.
  63. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System," Energies, MDPI, vol. 10(6), pages 1-12, June.
  64. Dongqi Liu & Yaonan Wang & Yongpeng Shen, 2016. "Electric Vehicle Charging and Discharging Coordination on Distribution Network Using Multi-Objective Particle Swarm Optimization and Fuzzy Decision Making," Energies, MDPI, vol. 9(3), pages 1-17, March.
  65. Yang, Linfeng & Zhang, Chen & Jian, Jinbao & Meng, Ke & Xu, Yan & Dong, Zhaoyang, 2017. "A novel projected two-binary-variable formulation for unit commitment in power systems," Applied Energy, Elsevier, vol. 187(C), pages 732-745.
  66. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
  67. Simone Sperati & Stefano Alessandrini & Pierre Pinson & George Kariniotakis, 2015. "The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation," Energies, MDPI, vol. 8(9), pages 1-26, September.
  68. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
  69. Zhiwei Li & Tianran Jin & Shuqiang Zhao & Jinshan Liu, 2018. "Power System Day-Ahead Unit Commitment Based on Chance-Constrained Dependent Chance Goal Programming," Energies, MDPI, vol. 11(7), pages 1-20, July.
  70. Abujarad, Saleh Y. & Mustafa, M.W. & Jamian, J.J., 2017. "Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 215-223.
  71. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
  72. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Bai, Yang & Wen, Qinglan, 2020. "Optimization of power dispatching strategies integrating management attitudes with low carbon factors," Renewable Energy, Elsevier, vol. 155(C), pages 555-568.
  73. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
  74. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
  75. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
  76. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
  77. Wu, Jing & Botterud, Audun & Mills, Andrew & Zhou, Zhi & Hodge, Bri-Mathias & Heaney, Mike, 2015. "Integrating solar PV (photovoltaics) in utility system operations: Analytical framework and Arizona case study," Energy, Elsevier, vol. 85(C), pages 1-9.
  78. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
  79. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Liu, Yuquan & Xiong, Wen, 2017. "An interval gas flow analysis in natural gas and electricity coupled networks considering the uncertainty of wind power," Applied Energy, Elsevier, vol. 201(C), pages 343-353.
  80. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
  81. Li, Zhigang & Qiu, Feng & Wang, Jianhui, 2016. "Data-driven real-time power dispatch for maximizing variable renewable generation," Applied Energy, Elsevier, vol. 170(C), pages 304-313.
  82. Jin, Jingliang & Zhou, Peng & Zhang, Mingming & Yu, Xianyu & Din, Hao, 2018. "Balancing low-carbon power dispatching strategy for wind power integrated system," Energy, Elsevier, vol. 149(C), pages 914-924.
  83. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
  84. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
  85. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
  86. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
  87. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.