IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924011796.html
   My bibliography  Save this article

A hierarchical framework for minimising emissions in hybrid gas-renewable energy systems under forecast uncertainty

Author

Listed:
  • Hoang, Kiet Tuan
  • Thilker, Christian Ankerstjerne
  • Knudsen, Brage Rugstad
  • Imsland, Lars Struen

Abstract

Developing and deploying renewables in existing energy systems are pivotal in Europe’s transition to net-zero emissions. In this transition, gas turbines (GTs) will be central for balancing purposes. However, a significant hurdle in minimising emissions of GTs operating in combination with intermittent renewables arises from the reliance on unreliable meteorological forecasts. Here, we propose a hierarchical framework for decoupling this operational problem into a balancing and emissions minimisation problem. Balancing is ensured with a high-level stochastic balancing filter (SBF) based on data-driven stochastic grey-box models for the uncertain intermittent renewable. The filter utilises probabilistic forecasting and less conservative chance constraints to compute safe bounds, within which a proposed low-level economic predictive controller further minimises emissions of the GTs during operations. As GTs exhibit semi-continuous operating regions, complementarity constraints are utilised to fully exploit each GT’s allowed operational range. The proposed method is validated in simulation for a gas-balanced hybrid renewable system with batteries, three GTs with varying capacities, and a wind farm. Using real historical operational wind data, our simulation shows that the proposed framework balances the energy demand and minimises emissions with up to 4.35% compared with other conventional control strategies in simulation by minimising the GT emissions directly with complementarity constraints in the low-level controller and indirectly with less conservative chance constraints in the high-level filter. The simulations show that the computational cost of the proposed framework is well within requirements for real-time applications. Thus, the proposed operational framework enables increased renewable share in hybrid energy systems with GTs and renewable energy and subsequently contributes to de-carbonising these types of isolated or grid-connected systems onshore and offshore.

Suggested Citation

  • Hoang, Kiet Tuan & Thilker, Christian Ankerstjerne & Knudsen, Brage Rugstad & Imsland, Lars Struen, 2024. "A hierarchical framework for minimising emissions in hybrid gas-renewable energy systems under forecast uncertainty," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924011796
    DOI: 10.1016/j.apenergy.2024.123796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    2. Jansen, Jelger & Jorissen, Filip & Helsen, Lieve, 2024. "Mixed-integer non-linear model predictive control of district heating networks," Applied Energy, Elsevier, vol. 361(C).
    3. Wang, Qin & Tuohy, Aidan & Ortega-Vazquez, Miguel & Bello, Mobolaji & Ela, Erik & Kirk-Davidoff, Daniel & Hobbs, William B. & Ault, David J. & Philbrick, Russ, 2023. "Quantifying the value of probabilistic forecasting for power system operation planning," Applied Energy, Elsevier, vol. 343(C).
    4. E. B. Iversen & J. M. Morales & J. K. Møller & H. Madsen, 2014. "Probabilistic forecasts of solar irradiance using stochastic differential equations," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 152-164, May.
    5. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
    6. Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    7. Kim, Jong Suk & Edgar, Thomas F., 2014. "Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming," Energy, Elsevier, vol. 77(C), pages 675-690.
    8. Appino, Riccardo Remo & González Ordiano, Jorge Ángel & Mikut, Ralf & Faulwasser, Timm & Hagenmeyer, Veit, 2018. "On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages," Applied Energy, Elsevier, vol. 210(C), pages 1207-1218.
    9. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    10. Thilker, Christian Ankerstjerne & Jørgensen, John Bagterp & Madsen, Henrik, 2022. "Linear quadratic Gaussian control with advanced continuous-time disturbance models for building thermal regulation," Applied Energy, Elsevier, vol. 327(C).
    11. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    12. Bürger, Adrian & Bohlayer, Markus & Hoffmann, Sarah & Altmann-Dieses, Angelika & Braun, Marco & Diehl, Moritz, 2020. "A whole-year simulation study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use components," Applied Energy, Elsevier, vol. 258(C).
    13. Thilker, Christian Ankerstjerne & Madsen, Henrik & Jørgensen, John Bagterp, 2021. "Advanced forecasting and disturbance modelling for model predictive control of smart energy systems," Applied Energy, Elsevier, vol. 292(C).
    14. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2013. "Sparse online warped Gaussian process for wind power probabilistic forecasting," Applied Energy, Elsevier, vol. 108(C), pages 410-428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    2. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    3. Parantapa Sawant & Oscar Villegas Mier & Michael Schmidt & Jens Pfafferott, 2021. "Demonstration of Optimal Scheduling for a Building Heat Pump System Using Economic-MPC," Energies, MDPI, vol. 14(23), pages 1-15, November.
    4. Kou, Peng & Gao, Feng & Guan, Xiaohong, 2015. "Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts," Renewable Energy, Elsevier, vol. 80(C), pages 286-300.
    5. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    6. Simone Sperati & Stefano Alessandrini & Pierre Pinson & George Kariniotakis, 2015. "The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation," Energies, MDPI, vol. 8(9), pages 1-26, September.
    7. Song, Xiaodong & Johnson, Paul & Duck, Peter, 2021. "A novel combination of Mycielski–Markov, regime switching and jump diffusion models for solar energy," Applied Energy, Elsevier, vol. 301(C).
    8. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    9. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    10. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    11. Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
    12. Rafael Alvarenga & Hubert Herbaux & Laurent Linguet, 2023. "On the Added Value of State-of-the-Art Probabilistic Forecasting Methods Applied to the Optimal Scheduling of a PV Power Plant with Batteries," Energies, MDPI, vol. 16(18), pages 1-24, September.
    13. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    14. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    15. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    16. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    17. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    18. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    19. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    20. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924011796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.