IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4504-d259228.html
   My bibliography  Save this article

Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty

Author

Listed:
  • Mohammad Masih Sediqi

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Mohammed Elsayed Lotfy

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan
    Department of Electrical Power and Machines, Zagazig University, Zagazig 44519, Egypt)

  • Abdul Matin Ibrahimi

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Narayanan. K

    (Department of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur-613401, India)

Abstract

This paper focuses on the optimal unit commitment (UC) scheme along with optimal power trading for the Northeast Power System (NEPS) of Afghanistan with a penetration of 230 MW of PV power energy. The NEPS is the biggest power system of Afghanistan fed from three main sources; 1. Afghanistan’s own power generation units (three thermal units and three hydro units); 2. imported power from Tajikistan; 3. imported power from Uzbekistan. PV power forecasting fluctuations have been handled by means of 50 scenarios generated by Latin-hypercube sampling (LHS) after getting the point solar radiation forecast through the neural network (NN) toolbox. To carry out the analysis, we consider three deterministic UC and two stochastic UC cases with a two-stage programming model that indicates the day-ahead UC as the first stage and the intra-day operation of the system as the second stage. A binary-real genetic algorithm is coded in MATLAB software to optimize the proposed cases in terms of thermal units’ operation costs, import power tariffs, as well as from the perspective of the system reliability risks expressed as the reserve and load not served costs. The results indicate that in the deterministic UC models, the risk of reserve and load curtailment does exist. The stochastic UC approaches including the optimal power trading are superior to the deterministic ones. Moreover, the scheduled UC costs and reserves are different from the actual ones.

Suggested Citation

  • Mohammad Masih Sediqi & Mohammed Elsayed Lotfy & Abdul Matin Ibrahimi & Tomonobu Senjyu & Narayanan. K, 2019. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4504-:d:259228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    2. Khan Mohammad Alamyar, 2014. "Renewable energy for sustainable development," 2nd International Conference on Energy, Regional Integration and Socio-Economic Development 7828, EcoMod.
    3. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    4. Furukakoi, Masahiro & Adewuyi, Oludamilare Bode & Matayoshi, Hidehito & Howlader, Abdul Motin & Senjyu, Tomonobu, 2018. "Multi objective unit commitment with voltage stability and PV uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 618-623.
    5. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Alqunun & Tawfik Guesmi & Abdullah F. Albaker & Mansoor T. Alturki, 2020. "Stochastic Unit Commitment Problem, Incorporating Wind Power and an Energy Storage System," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    2. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    2. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
    3. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    4. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    5. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    6. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    7. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    8. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    9. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    10. Sharifzadeh, Mahdi & Lubiano-Walochik, Helena & Shah, Nilay, 2017. "Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 385-398.
    11. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    12. Moghaddas Tafreshi, Seyed Masoud & Ranjbarzadeh, Hassan & Jafari, Mehdi & Khayyam, Hamid, 2016. "A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 934-947.
    13. Isuru, Mohasha & Hotz, Matthias & Gooi, H.B. & Utschick, Wolfgang, 2020. "Network-constrained thermal unit commitment fortexhybrid AC/DC transmission grids under wind power uncertainty," Applied Energy, Elsevier, vol. 258(C).
    14. Chen, J.J. & Qi, B.X. & Peng, K. & Li, Y. & Zhao, Y.L., 2020. "Conditional value-at-credibility for random fuzzy wind power in demand response integrated multi-period economic emission dispatch," Applied Energy, Elsevier, vol. 261(C).
    15. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    16. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    17. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    18. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    19. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    20. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4504-:d:259228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.