IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp914-924.html
   My bibliography  Save this article

Balancing low-carbon power dispatching strategy for wind power integrated system

Author

Listed:
  • Jin, Jingliang
  • Zhou, Peng
  • Zhang, Mingming
  • Yu, Xianyu
  • Din, Hao

Abstract

With the introduction of carbon trading in wind power integrated system, decision-makers may face more contradictions, such as economy and environment, objectivity and subjectivity, certainty and uncertainty. In order to balance these contradictions, this paper presents an economic emission dispatch model focusing on carbon price and wind power uncertainty simultaneously. Specifically factors for eliminating adverse effects of wind power uncertainty in both economic and environmental respects are particularly considered, decision-makers’ subjective investment attitudes towards wind power development could be quantitatively depicted according to carbon price. The simulation results eventually demonstrate that increasing the penalty coefficient core reflects decision-makers’ more radical investment attitudes, while improving the reserve coefficient core embodies more conservative investment attitudes; increasing carbon price will generally encourage decision-makers to explore more wind power, and to restrict thermal power; the more radical attitudes decision-makers hold, scheduling outputs the more sensitive with carbon price, and the faster wind power advance. Taking into full account carbon price and wind power uncertainty, the proposed model is beneficial to exploring a more balanced low-carbon power dispatching strategy for wind power integrated system.

Suggested Citation

  • Jin, Jingliang & Zhou, Peng & Zhang, Mingming & Yu, Xianyu & Din, Hao, 2018. "Balancing low-carbon power dispatching strategy for wind power integrated system," Energy, Elsevier, vol. 149(C), pages 914-924.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:914-924
    DOI: 10.1016/j.energy.2018.02.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timilsina, Govinda R. & Cornelis van Kooten, G. & Narbel, Patrick A., 2013. "Global wind power development: Economics and policies," Energy Policy, Elsevier, vol. 61(C), pages 642-652.
    2. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    3. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Qian, Shuqu & Zhang, Mingming, 2016. "Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system," Energy, Elsevier, vol. 106(C), pages 453-463.
    4. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    5. Wang, Can & Ye, Minhua & Cai, Wenjia & Chen, Jining, 2014. "The value of a clear, long-term climate policy agenda: A case study of China’s power sector using a multi-region optimization model," Applied Energy, Elsevier, vol. 125(C), pages 276-288.
    6. Utgikar, V.P. & Scott, J.P., 2006. "Energy forecasting: Predictions, reality and analysis of causes of error," Energy Policy, Elsevier, vol. 34(17), pages 3087-3092, November.
    7. Yang, Chi-Jen & Xuan, Xiaowei & Jackson, Robert B., 2012. "China's coal price disturbances: Observations, explanations, and implications for global energy economies," Energy Policy, Elsevier, vol. 51(C), pages 720-727.
    8. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2015. "The implications of CO2 price for China’s power sector decarbonization," Applied Energy, Elsevier, vol. 146(C), pages 53-64.
    9. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    10. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2006. "Wind power potential and characteristic analysis of the Pearl River Delta region, China," Renewable Energy, Elsevier, vol. 31(6), pages 739-753.
    11. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.
    12. Basu, M., 2014. "Fuel constrained economic emission dispatch using nondominated sorting genetic algorithm-II," Energy, Elsevier, vol. 78(C), pages 649-664.
    13. Wang, Nannan & Chang, Yen-Chiang, 2014. "The evolution of low-carbon development strategies in China," Energy, Elsevier, vol. 68(C), pages 61-70.
    14. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
    15. Zhang, Dongjie & Liu, Pei & Ma, Linwei & LI, Zheng, 2013. "A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy," Energy Policy, Elsevier, vol. 58(C), pages 319-328.
    16. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    17. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    18. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Gang & Wen, Jiaxing & Xie, Tuo & Zhang, Kaoshe & Jia, Rong, 2023. "Bi-layer economic scheduling for integrated energy system based on source-load coordinated carbon reduction," Energy, Elsevier, vol. 280(C).
    2. Cheng, Xiu & Long, Ruyin & Wu, Fan & Geng, Jichao & Yang, Jiameng, 2023. "How social interaction shapes habitual and occasional low-carbon consumption behaviors: Evidence from ten cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. XU Jianzhong & Albina Assenova & Vasilii Erokhin, 2018. "Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    4. Wang, Bangyan & Wang, Xiuli & Wei, Fengting & Shao, Chengcheng & Zhou, Jiahao & Lin, Jintian, 2023. "Multi-stage stochastic planning for a long-term low-carbon transition of island power system considering carbon price uncertainty and offshore wind power," Energy, Elsevier, vol. 282(C).
    5. Zhao, Shihao & Li, Kang & Yang, Zhile & Xu, Xinzhi & Zhang, Ning, 2022. "A new power system active rescheduling method considering the dispatchable plug-in electric vehicles and intermittent renewable energies," Applied Energy, Elsevier, vol. 314(C).
    6. Mou, Dunguo & He, Xiaoping, 2019. "Developing large-scale energy storage to alleviate a low-carbon energy bubble," Energy Policy, Elsevier, vol. 132(C), pages 62-74.
    7. Meng, Fanyi & Bai, Yang & Jin, Jingliang, 2021. "An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm," Renewable Energy, Elsevier, vol. 178(C), pages 13-24.
    8. Samal, Rajat Kanti & Tripathy, M., 2019. "A novel distance metric for evaluating impact of wind integration on power systems," Renewable Energy, Elsevier, vol. 140(C), pages 722-736.
    9. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Bai, Yang & Wen, Qinglan, 2020. "Optimization of power dispatching strategies integrating management attitudes with low carbon factors," Renewable Energy, Elsevier, vol. 155(C), pages 555-568.
    2. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Qian, Shuqu & Zhang, Mingming, 2016. "Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system," Energy, Elsevier, vol. 106(C), pages 453-463.
    3. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    4. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Guo, Xiaojun & Zhang, Mingming, 2019. "Low-carbon power dispatch with wind power based on carbon trading mechanism," Energy, Elsevier, vol. 170(C), pages 250-260.
    5. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    6. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    7. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    8. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2015. "The implications of CO2 price for China’s power sector decarbonization," Applied Energy, Elsevier, vol. 146(C), pages 53-64.
    9. Rodriguez-Hernandez, O. & Jaramillo, O.A. & Andaverde, J.A. & del Río, J.A., 2013. "Analysis about sampling, uncertainties and selection of a reliable probabilistic model of wind speed data used on resource assessment," Renewable Energy, Elsevier, vol. 50(C), pages 244-252.
    10. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    11. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    12. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
    13. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    14. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    15. Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
    16. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    17. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
    19. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    20. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:914-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.