IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp528-541.html
   My bibliography  Save this article

Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales

Author

Listed:
  • Zhang, Jie
  • Cui, Mingjian
  • Hodge, Bri-Mathias
  • Florita, Anthony
  • Freedman, Jeffrey

Abstract

The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most of the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.

Suggested Citation

  • Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:528-541
    DOI: 10.1016/j.energy.2017.01.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    2. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    3. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    4. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    5. Botterud, Audun & Wang, Jianhui & Miranda, Vladimiro & Bessa, Ricardo J., 2010. "Wind Power Forecasting in U.S. Electricity Markets," The Electricity Journal, Elsevier, vol. 23(3), pages 71-82, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Joseph C.Y. & Draxl, Caroline & Berg, Larry K., 2022. "Evaluating wind speed and power forecasts for wind energy applications using an open-source and systematic validation framework," Renewable Energy, Elsevier, vol. 200(C), pages 457-475.
    2. Mejia, Mario A. & Melo, Joel D. & Zambrano-Asanza, Sergio & Padilha-Feltrin, Antonio, 2020. "Spatial-temporal growth model to estimate the adoption of new end-use electric technologies encouraged by energy-efficiency programs," Energy, Elsevier, vol. 191(C).
    3. Laura Cornejo-Bueno & Lucas Cuadra & Silvia Jiménez-Fernández & Javier Acevedo-Rodríguez & Luis Prieto & Sancho Salcedo-Sanz, 2017. "Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data," Energies, MDPI, vol. 10(11), pages 1-27, November.
    4. Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
    5. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Hu, Jianming & Zhang, Liping & Tang, Jingwei & Liu, Zhi, 2023. "A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting," Energy, Elsevier, vol. 280(C).
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    9. Naegele, S.M. & McCandless, T.C. & Greybush, S.J. & Young, G.S. & Haupt, S.E. & Al-Rasheedi, M., 2020. "Climatology of wind variability for the Shagaya region in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    11. Hugo Algarvio & António Couto & Fernando Lopes & Ana Estanqueiro, 2019. "Changing the Day-Ahead Gate Closure to Wind Power Integration: A Simulation-Based Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
    12. Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
    13. Wang, Yun & Hu, Qinghua & Meng, Deyu & Zhu, Pengfei, 2017. "Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model," Applied Energy, Elsevier, vol. 208(C), pages 1097-1112.
    14. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    15. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).
    16. Saira Al-Zadjali & Ahmed Al Maashri & Amer Al-Hinai & Rashid Al Abri & Swaroop Gajare & Sultan Al Yahyai & Mostafa Bakhtvar, 2021. "A Fast and Accurate Wind Speed and Direction Nowcasting Model for Renewable Energy Management Systems," Energies, MDPI, vol. 14(23), pages 1-20, November.
    17. Wang, Huaizhi & Ruan, Jiaqi & Ma, Zhengwei & Zhou, Bin & Fu, Xueqian & Cao, Guangzhong, 2019. "Deep learning aided interval state prediction for improving cyber security in energy internet," Energy, Elsevier, vol. 174(C), pages 1292-1304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Laura Cornejo-Bueno & Lucas Cuadra & Silvia Jiménez-Fernández & Javier Acevedo-Rodríguez & Luis Prieto & Sancho Salcedo-Sanz, 2017. "Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data," Energies, MDPI, vol. 10(11), pages 1-27, November.
    3. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    4. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    5. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    7. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    8. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
    9. Mc Garrigle, E.V. & Leahy, P.G., 2015. "Quantifying the value of improved wind energy forecasts in a pool-based electricity market," Renewable Energy, Elsevier, vol. 80(C), pages 517-524.
    10. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    11. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    12. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    13. Vogel, E.E. & Saravia, G. & Kobe, S. & Schumann, R. & Schuster, R., 2018. "A novel method to optimize electricity generation from wind energy," Renewable Energy, Elsevier, vol. 126(C), pages 724-735.
    14. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    15. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    16. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
    17. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    18. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
    19. Cheng, William Y.Y. & Liu, Yubao & Bourgeois, Alfred J. & Wu, Yonghui & Haupt, Sue Ellen, 2017. "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, Elsevier, vol. 107(C), pages 340-351.
    20. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:528-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.