IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp517-524.html
   My bibliography  Save this article

Quantifying the value of improved wind energy forecasts in a pool-based electricity market

Author

Listed:
  • Mc Garrigle, E.V.
  • Leahy, P.G.

Abstract

This work illustrates the influence of wind forecast errors on system costs, wind curtailment and generator dispatch in a system with high wind penetration. Realistic wind forecasts of different specified accuracy levels are created using an auto-regressive moving average model and these are then used in the creation of day-ahead unit commitment schedules. The schedules are generated for a model of the 2020 Irish electricity system with 33% wind penetration using both stochastic and deterministic approaches. Improvements in wind forecast accuracy are demonstrated to deliver: (i) clear savings in total system costs for deterministic and, to a lesser extent, stochastic scheduling; (ii) a decrease in the level of wind curtailment, with close agreement between stochastic and deterministic scheduling; and (iii) a decrease in the dispatch of open cycle gas turbine generation, evident with deterministic, and to a lesser extent, with stochastic scheduling.

Suggested Citation

  • Mc Garrigle, E.V. & Leahy, P.G., 2015. "Quantifying the value of improved wind energy forecasts in a pool-based electricity market," Renewable Energy, Elsevier, vol. 80(C), pages 517-524.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:517-524
    DOI: 10.1016/j.renene.2015.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    2. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    3. Mc Garrigle, E.V. & Deane, J.P. & Leahy, P.G., 2013. "How much wind energy will be curtailed on the 2020 Irish power system?," Renewable Energy, Elsevier, vol. 55(C), pages 544-553.
    4. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    5. Higgins, P. & Foley, A.M. & Douglas, R. & Li, K., 2014. "Impact of offshore wind power forecast error in a carbon constraint electricity market," Energy, Elsevier, vol. 76(C), pages 187-197.
    6. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    2. Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
    3. Rasku, Topi & Miettinen, Jari & Rinne, Erkka & Kiviluoma, Juha, 2020. "Impact of 15-day energy forecasts on the hydro-thermal scheduling of a future Nordic power system," Energy, Elsevier, vol. 192(C).
    4. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    5. Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
    6. Lyons, Selina & Whale, Jonathan & Wood, Justin, 2018. "Wind power variations during storms and their impact on balancing generators and carbon emissions in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 118(C), pages 1052-1063.
    7. Dehghani, Hamed & Vahidi, Behrooz & Hosseinian, Seyed Hossein, 2017. "Wind farms participation in electricity markets considering uncertainties," Renewable Energy, Elsevier, vol. 101(C), pages 907-918.
    8. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    9. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    10. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    11. Lujano-Rojas, J.M. & Osório, G.J. & Matias, J.C.O. & Catalão, J.P.S., 2016. "A heuristic methodology to economic dispatch problem incorporating renewable power forecasting error and system reliability," Renewable Energy, Elsevier, vol. 87(P1), pages 731-743.
    12. Hung, Tzu-Chieh & Chong, John & Chan, Kuei-Yuan, 2017. "Reducing uncertainty accumulation in wind-integrated electrical grid," Energy, Elsevier, vol. 141(C), pages 1072-1083.
    13. David Schönheit & Dominik Möst, 2019. "The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany’s Day-Ahead Wind Energy Forecasts," Energies, MDPI, vol. 12(13), pages 1-23, July.
    14. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    15. Antonello Rosato & Rosa Altilio & Rodolfo Araneo & Massimo Panella, 2017. "Prediction in Photovoltaic Power by Neural Networks," Energies, MDPI, vol. 10(7), pages 1-25, July.
    16. Yu-Jen Chen & Y. C. Shiah, 2016. "Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley," Energies, MDPI, vol. 9(5), pages 1-13, May.
    17. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
    18. Davis, Dominic & Brear, Michael J., 2024. "Impact of short-term wind forecast accuracy on the performance of decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    2. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
    3. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    4. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    5. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    6. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    7. repec:dui:wpaper:1305 is not listed on IDEAS
    8. Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
    9. Jae-Kun Lyu & Jae-Haeng Heo & Jong-Keun Park & Yong-Cheol Kang, 2013. "Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects," Energies, MDPI, vol. 6(11), pages 1-21, October.
    10. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    11. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    12. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    13. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    14. Spiecker, Stephan & Weber, Christoph, 2014. "The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis," Energy Policy, Elsevier, vol. 65(C), pages 185-197.
    15. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
    16. Higgins, P. & Foley, A.M. & Douglas, R. & Li, K., 2014. "Impact of offshore wind power forecast error in a carbon constraint electricity market," Energy, Elsevier, vol. 76(C), pages 187-197.
    17. Moradi, Jalal & Shahinzadeh, Hossein & Khandan, Amirsalar & Moazzami, Majid, 2017. "A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market," Energy, Elsevier, vol. 141(C), pages 1779-1794.
    18. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    19. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
    20. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    21. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:517-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.